• Title/Summary/Keyword: ceramic mold

Search Result 122, Processing Time 0.023 seconds

Evaluation of Reliability on the 6.6kV Class Ceramic Coupler for On-line Partial Discharge Measurement in Winding Machines (권선형기기 On-line 부분방전 측정용 6-6kV급 Ceramic Coupler의 신뢰성 평가)

  • Kang Dong-Sik;Kim Yong-Joo;Yun Youn-Ho
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.54 no.2
    • /
    • pp.69-75
    • /
    • 2005
  • In order to improve the reliability of high voltage rotating machines and mold transformers, it is necessary to understand the breakdown mechanism and life assessment of the high voltage winding parts. Especially the on-line PD test provides the ability to monitor effects, such as slot discharge, internal discharge, and end-winding discharge without interrupting the electrical machines, this method has been proven the major testing technology. Capacitive couplers have been the most widely used sensors for the on-line partial discharge detection in rotating machines nowadays. This paper deals with the electrical characteristics and long-term reliability of a ceramic coupler(CC), which can be easily mounted into high voltage input terminal part, has been developed and tested to continuously measure PD activity during operating condition. This paper presents electrical characteristics (dielectric loss angle, capacitance, PD inception level, breakdown voltage, and frequency response bandwidth) and long-term life test result of the developed 6.6 kV class on-line ceramic coupling sensor. It was found that this sensor had good electrical characteristics to detect PD activity during the operating condition with its detection frequency band is between several and several tens MHz. Also, the voltage life of the 6.6kV class ceramic coupler was calculated over 60 years.

FRACTURE STRENGTH OF ZIRCONIA MONOLITHIC CROWNS (지르코니아 단일구조 전부도재관의 파절강도)

  • Jeong Hee-Chan
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.44 no.2
    • /
    • pp.157-164
    • /
    • 2006
  • Purpose: The purpose of this study was to compare the fracture strength of the zirconia monolithic all-ceramic crowns according to the thickness(0.5 mm, 0.8 mm, 1.1 mm) and IPS Empress II ceramic crown of 1.5 mm thickness. Material and method: Eight crowns for each of 3 zirconia crown groups were fabricated using CAD/CAM system(Kavo, Germany) and eight Empress II crowns were made from silicone mold and wax pattern. Each crown group was finished in accordance with the specific manufacturer s instruction. All crowns were luted to the metal dies using resin cement and mounted on the testing jig in a universal testing machine. The load was directed at the center of crown with perpendicular to the long axis of each specimen until catastrophic failure occurred. Analysis of variance and Tukey multiple comparison test(p<.05) were applied to the data. Results and Conclusion: 1. The fracture strength of the zirconia monolithic all-ceramic crown was higher thickness increased(p<.05). 2 The fracture strength of 1.1 mm thickness zirconia monolithic all-ceramic crown was higher than the fracture strength of 1.5 mm thickness IPS Empress II crown(p<.05). 3. The fracture strength of 0.5 mm thickness zirconia monolithic all-ceramic crown exceeded maximum occlusal forces.

Composition-property Relationships of Enamel Glass for Low Carbon Steel

  • Kang, Eun-Tae;Kim, Jong-Po;Cho, Yong-Hyun;Park, Seon-Mi
    • Journal of the Korean Ceramic Society
    • /
    • v.50 no.3
    • /
    • pp.186-194
    • /
    • 2013
  • The relationship between composition and properties of enamel glass was investigated by introducing a mixture design. The enamel glass was manufactured by mixing various components under the following constraints: $45{\leq}SiO_2{\leq}55$, $10{\leq}B_2O_3{\leq}18$, $6{\leq}Na_2O{\leq}15$, $1{\leq}Li_2O{\leq}6$, $5{\leq}K_2O{\leq}10$, $0{\leq}TiO_2{\leq}8$, $0{\leq}ZrO_2{\leq}8$, 13.3MO (mol %). A mathematical model for the calculation of some properties of enamel glasses as a function of their composition was developed by the experimental statistical method. The results showed that the proposed model with the experimental measurement were in good agreement and the mixture experimental design was an effective method for optimizing the composition of the enamel glass with respect to its properties.

The development and the characteristics of environmentfriendly sinker for octopus drift-line (문어흘림낚시용 친환경 봇돌의 개발과 그 특성)

  • An, Young-Il;Yoon, Sang-Ok
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.44 no.3
    • /
    • pp.184-193
    • /
    • 2008
  • For environment-friendly fishery, the lead sinkers of octopus drift line were developed with the environmentfriendly sinker, and their characteristics and performance were investigated. To make the environmentfriendly sinker, the hydrate ceramic material was developed, and to increase the weight and strength, the iron power was added to it. The fishing hook was machine-made, and standardized, by using 60cm iron wire. For the manufacture of the sinker, the first, the mold was made, and then, hydrate ceramic material and water were quantitatively mixed. The mixture was poured into the mold prepared with a fishing hook already inserted, and had hardened for several hour, before it was taken out of the mold as a complete sinker. The sinkers were made in the 8 types ranging in weight from 150 to 500g, and their specific gravities were diverse from 2.871 to 6.637, which was 0.19 to 0.44 times lower than that of lead. The movement of the environment-friendly sinker by flume tank was possible in the weaker current speed than the similar lead sinker. In the coastal fishing grounds of Gangwon province, the comparison of catching efficiency was made between the improved fishing gears composed of the environment-friendly sinkers and artificial baits, and the current used fishing gears of lead sinkers and pig-fat baits. The result showed the tendency in which the improved fishing gears caught the bigger octopuses than the current used fishing gears. In the quantity and number of the fish catch per unit fishing gear, the improved fishing gear showed a little more catch than the current used fishing gear, regardless of the fishing area. However, the number of the improved fishing gears lost during fishing operation was similar to that of the current used fishing gears.

Ceramic Direct Rapid Tooling with FDM 3D Printing Technology (FDM 3D Printing 기술을 응용한 직접식 세라믹 쾌속툴링)

  • Shin, Geun-Sik;Kweon, Hyun-Kyu;Kang, Yong-Goo;Oh, Won-Taek
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.7
    • /
    • pp.83-89
    • /
    • 2019
  • In the conventional casting and forging method, there is a disadvantage that a mold is an essential addition, and a production cost is increased when a small quantity is produced. In order to overcome this disadvantage, a metal 3D printing production method capable of directly forming a shape without a mold frame is mainly used. In particular, overseas research has been conducted on various materials, one of which is a metal printer. Similarly, domestic companies are also concentrating on the metal printer market. However, In this case of the conventional metal 3D printing method, it is difficult to meet the needs of the industry because of the high cost of materials, equipment and maintenance for product strength and production. To compensate for these weaknesses, printers have been developed that can be manufactured using sand mold, but they are not accessible to the printer company and are expensive to machine. Therefore, it is necessary to supply three-dimensional casting printers capable of metal molding by producing molds instead of conventional metal 3D printing methods. In this study, we intend to reduce the unit price by replacing the printing method used in the sand casting printer with the FDM method. In addition, Ag paste is used to design the output conditions and enable ceramic printing.

Preparation of Machinable Ceramics Using Domestic Pyrophyllite (국내산 납석을 이용한 Machinable Ceramics의 제조)

  • 정창주;정회준;양삼열
    • Journal of the Korean Ceramic Society
    • /
    • v.28 no.7
    • /
    • pp.531-540
    • /
    • 1991
  • In this study, high quality machinable ceramics was prepared from the K2O-MgO-Al2O3-SiO2-B2O3-F glass system using domestic pyrophyllite. The mixture of pyrophyllite and additives was melted at 1450$^{\circ}C$ for 1 hour and formed in a graphite mold. The base glass was heat-treated at 600$^{\circ}C$ to 1200$^{\circ}C$ with interval of 50$^{\circ}C$ for 3 hours identified by XRD. Crystalline phase were confirmed by XRD and their microstructure was observed by SEM. The glass ceramics which was prepared by heat treatment of base glass at 1150$^{\circ}C$ for short time has good physical, mechanical, thermal, chemical properties and machinability.

  • PDF

The Influence of the Silica Contents for High Temperature Strength for Single Crystal Casting Mold of Superalloys (초합금 단결정 주조용 주형의 실리카 함량에 따른 고온강도 영향)

  • An, Seong-Uk;Larionov, V.;Grafas, I.;Im, Ok-Dong;Jin, Yeong-Hun;Seo, Dong-Lee;Lee, Jae-Hun;Kim, Byeong-Ho;O, Je-Myeong
    • Korean Journal of Materials Research
    • /
    • v.8 no.10
    • /
    • pp.879-883
    • /
    • 1998
  • In the vacuum casting process for superalloys, molten metal are poured into the heated ceramic mold up to $1000^{\circ}C~1700^{\circ}C$. The mold has to have the high temperature strength during casting and made by hlgh purity alumina. In this sturdy, the mold was made by low purity alumina and changed silica contents intended to have high strength The 7.7wt.% SiOz specimens have 10- 55% higher strength than others in room and high temp. Therefore, the cast mold has been developed in this study for single crystal vacuum cast by controlling the ratio of fused alumina and colloidal silica which are used commercially for conventional casting in industries.

  • PDF

Fabrication of Ceramic Line Pattern by UV-Nanoimprint Lithography of Inorganic Polymers (무기고분자의 나노임프린트법에 의한 세라믹 선형 패턴의 제조)

  • Park Jun-Hong;Pham Tuan-Anh;Lee Jae-Jong;Kim Dong-Pyo
    • Polymer(Korea)
    • /
    • v.30 no.5
    • /
    • pp.407-411
    • /
    • 2006
  • The SiC-based ceramic nanopatterns were prepared by placing polydimethylsiloxane (PDMS) mold from DVD master on the spincoated polyvinylsilaeane (PVS) or allylhydridopolycaybosilane (AHPCS) as ceramic precursors to fabricate line pattern via UV-nanoimprint lithography (UV-NIL), and subsequent pyrolysis at $800^{\circ}C$ in nitrogen atmosphere. As the dimensional change of polymeric and ceramic patterns was comparatively investigated by AFM and SEM, the shrinkage in height was 38.5% for PVS derived pattern and 24.1% for AHPCS derived pattern while the shrinkage in width was 18.8% for PVS and 16.7% for AHPCS. It indicates that higher ceramic yield of the ceramic precursor resulted in less shrinkage, and the strong adhesion between the substrate and the pattern caused anisotropic shrinkage. This preliminary work suggests that NIL is a promissing route for fabricating ceramic MEMS devices, with the development on the shrinkage control.

Rapid Tooling of Aluminum Mold Using Slurry Casting and Vacuum Sealed Casting (슬러리 캐스팅과 흡인주조기술을 이용한 알루미늄 금형의 쾌속제작)

  • Jeong, Hae-Do;Bae, Won-Byung
    • Journal of Korea Foundry Society
    • /
    • v.20 no.4
    • /
    • pp.277-282
    • /
    • 2000
  • The RP&M (Rapid prototyping and Manufacturing) is the most appropriate technology for the small-lot production system, in which the production cycle is getting shorter owing to various needs from consumers. In this paper, RP&M is applied to a casting process. A casting process has a merit of being able to reflect complicated shapes at one time. But it has not been applied to the precision industry because of bad quality on surface. So we will improve characteristics of aluminum casting process using vacuum sealed casting process and porous ceramic mold which is made by slurry casting process.

  • PDF

Fabrication of SiCN structures using PDMS mold for high-temperature applications (PDMS 몰드를 이용한 초고온용 SiCN 구조물의 제작)

  • Woo, Hyung-Soon;Kim, Gue-Hyun;Chung, Gwiy-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.376-379
    • /
    • 2003
  • In this paper, a novel processing technique for fabrication of high-temperature MEMS based on polymer-derived SiCN microstructures is described. PDMS molds are fabricated on SU-8 photoresist using standard UV-photolithographic processes. Liquid precursors are injected into the PDMS mold. And then, the resulting solid polymer structures are crosslinked under isostatic pressure, and pyrolyzed to form a ceramic capable of withstanding over $1500^{\circ}C$. These fabricated SiCN structures would be applied for high-temperature applications, such as heat exchanger and combustion chamber.

  • PDF