• 제목/요약/키워드: ceramic cement

검색결과 531건 처리시간 0.022초

슬래그를 혼합한 고온형 벨라이트 시멘트의 특성 (Properties of the Active Belite Cement with Slag)

  • 안태호;박동철;심광보;최상홀
    • 한국세라믹학회지
    • /
    • 제36권6호
    • /
    • pp.599-603
    • /
    • 1999
  • In an effort to improve the mechanical properties of the belite cement active belite cement clinker was synthesized. Properties of the clinker were characterized by a XRD, FT-IE optical microscopy and SEM. The additive effects of slag on the hydration properties were investigated by the measurement of compressive strength heat evolution and SEM. The experimental results exhibited that the 3wt% borax was effective in stabilizing $\alpha$'-C2S and the addition of 5wt% anhydrite and 40wt% slag wee effective in the hydration.

  • PDF

불산 무수석고와 플라이 애쉬를 첨가한 시멘트 페이스트의 유동성 및 응결특성 (Fluidity and Setting Properties of Cement Paste by Adding of Fluoro Anhydrite and Fly Ash)

  • 노재성;김도수;홍성수;임계규;임헌성
    • 한국세라믹학회지
    • /
    • 제34권12호
    • /
    • pp.1261-1267
    • /
    • 1997
  • Four kids of powder admixtures(A, B, C, D) based on anhydrite were manufactured by mixing at a fixed rate of II-anhydrite, fly ash and active silica as an industrial by-product. Fluidity properties of cement paste such as mini-slump, apparent viscosity with elapsed time, as well as setting time of cement pastes of these admixtures substituted up to 11wt% of cement were compared to those of cement paste(SS) substisuted by marketed high-strength powder admixture(S). Among these powder admixtures, the fluidity of cement pastes(PA, PC) substituted by A and C powder admixtures manufactured from II-anhydrite and fly ash had an excellent property than that of cement paste substituted by marketed powder admixture and also a good fluidity-retention effect with elapsed time by adding of superplasticizer. The setting time of cement paste substituted by powder admixtures based on anhydrite slightly retarded than that of cement paste substituted by marketed powder admixture.

  • PDF

가공된 석탄재를 사용한 석탄재혼합시멘트의 모르터 특성 (The Mortar Properties of Portland Cements Blended with Modified Coal Ashes)

  • 홍원표;노재성;조헌영;정수영;김무한
    • 한국세라믹학회지
    • /
    • 제27권7호
    • /
    • pp.833-840
    • /
    • 1990
  • For the development of multi-functional materials which has water reducing power, air entraining power and waterproofing power as well as blending additive in cement mortar the coal ash was modified with asphalt-stearic acid or asphalt-boiled oil mixtures by mechanical treatment. And the physical properties of cement mortar blended with modified coal ashes were compared with those of the water-tightness-cement mortar and the ordinary-portland-cement mortar added with AE.water reducing agent. The mortar of coalash-blend-cement modified with asphalt-stearic mixture was increased acid about 20% in initial strengths and decreased about 20% in water absorption ratio than those of ordinary coalash-blend-cement. The mortar of coalash-blend-cement modified with asphalt-bolied oil mixture was similar to the cement mortar added with AE.water reducing agent in water reduction ratio, air entraining conents and the initial strengths, also was similar to the water-tightness-cement mortar in water absorption and water permeability ratios.

  • PDF

시멘트 페이스트의 특성에 미치는 흡수성폴리머의 영향 (Effects of Absorbent Polymer on the Moisture Resistance and Hydration Characteristics of Cement Pastes)

  • 나종균;김창은;이승규
    • 한국세라믹학회지
    • /
    • 제36권5호
    • /
    • pp.539-546
    • /
    • 1999
  • Absorbent polymer-cement composites were fabricated by the semi-powder mixing OPC(ordinary Portland cement) with an absorbent polymer. The effects of absorbent polymer on the mechanical properties and the hydration characteristics were observed and the polymer-cement interaction also discussed. Absorbent polymer-cement composites showed the value of total porosity of 8vol% the value of 28 days flexural strength was up to 280 Kgf/cm2 in the case of absorbent polymer-cement composite at 1 wt% absorbent polymer content and microstructure of absorbent polymer-cement composite has been observed more dense than that of OPC paste. Accordingly the permeability of compositewas improved and so the moisture resistance was also increased. Adding polymer did not retard the hydration of OPC. It was considered from the results of IR(infrared) analysis that the functional group of absorbent polymer would be changed from unidentate to bidentate during by the hydration of cement minerals.

  • PDF

저 분말도 고로슬래그 분말을 사용한 혼합시멘트의 물성 (Properties of Blended Cement Using Ground Blastfurnace Slag with Low Blain Value)

  • 송종택;김재영;최현국;변승호
    • 한국세라믹학회지
    • /
    • 제37권1호
    • /
    • pp.70-76
    • /
    • 2000
  • In order to investigate the properties of the blended cement using coarsely ground blasturnace slag blended coements which were substituted from 10 to 70 wt% low Blaine slag powder (2,000 and 3,000 cm2/g) for porland cement clinker were prepared and Cal(OH)2 contents in hydrates hydration heat the fluidity and the compressive strength were measured. As the content of slag was increased the hydration heat and the early strength was decreased and the fluidity of the cement paste was improved. The heat evolution of the cement with 2,000cm2/g slag was lower than that of 3,000 cm2/g slag blended cement. Especially the heat evolution of 60wt% or above slag blended cement was similar to that of belite rich cement.

  • PDF

수종의 자가 접착 레진 시멘트의 물성 및 lithium disilicate ceramic과 상아질에 대한 전단결합강도 비교 (PHYSICAL PROPERTIES OF DIFFERENT SELF-ADHESIVE RESIN CEMENTS AND THEIR SHEAR BOND STRENGTH ON LITHIUM DISILICATE CERAMIC AND DENTIN)

  • 신혜진;송창규;박세희;김진우;조경모
    • Restorative Dentistry and Endodontics
    • /
    • 제34권3호
    • /
    • pp.184-191
    • /
    • 2009
  • 본 연구의 목적은 치면 처리와 수복물 내면의 처리가 필요 없는 자가 접착 레진 시멘트의 물성 및 lithium disilicate ceramic과 상아질에 대한 전단결합강도를 측정하고 기존의 레진 시멘트와 비교하여 임상적 유용성을 알아보고자 하는 것이다. 실험군인 자가 접착 레진 시멘트로는 Rely-X Unicem, Embrace Wetbond, Maxcem, BisCem을, 대조군으로는 기존의 레진 시멘트인 Rely-X ARC, 수복용 복합레진인 Z-350을 사용하였다. 각 레진 시멘트의 물성 평가를 위하여 테플론 주형을 이용하여 시편을 제작하고 만능 시험기를 이용하여 압축강도, 간접인장강도, 굴곡강도를 측정하였다. IPS Empress 2 및 상아질 시편에 제조사의 지시대로 Rely-X ARE군과 Z-350군에만 전처리를 시행 후 각 시멘트를 접착하고 전단결합강도를 측정하였다. 실험 결과는 다음과 같았다. 1. 자가 접착 레진 시멘트인 Biscem이 가장 낮은 물리적 성질을 나타내었다 (P<0.05). 2. 자가 접착 레진 시멘트의 상아질 및 도재에 대한 전단결합강도는 기존의 레진 시멘트에 비해 유의성 있게 낮은 값을 나타내었다. (P<0.05). 이상의 결과로 볼 때 자가 접착 레진 시멘트는 기존의 레진 시멘트에 비해 물리적 성질 및 상아질과 lithium disilicate ceramic에 대한 전단결합강도가 떨어지는 것으로 사료된다.

도재와 상아질의 표면 처리가 도재의 파절 강도에 미치는 영향 (THE EFFECT OF SURFACE TREATMENT ON FRACTURE STRENGTH OF DENTAL CERAMICS)

  • 이신원;이선형;양재호;정헌영
    • 대한치과보철학회지
    • /
    • 제37권5호
    • /
    • pp.658-671
    • /
    • 1999
  • The major influencing factors on the strength of all-ceramic crowns are types of dental ceramics, fabrication techniques, methods of abutment preparation and cementation modes of all-ceramic restorations. Zinc phosphate cement and glass-ionomer cement were used as an early lot-ing media for all-ceramic crowns. Recently many studies have reported that resin cements have more advantages in increasing the fracture strength of restorations comparing with zincphosphate cement and glass-ionomer cement. The purpose of this study is to investigate the effect of etching, silane treatment, sandblasting and dentin bonding agents on fracture strengths of dental ceramics. 40 flat dentin specimens and 40 ceramic discs of 1.5mm thickness and 8mm diameter were fabricated, and divided into 4 groups according to surface treatments. Surface treatments before cementation were as follows Group I : (ceramic) : HF etching - silane treatment - application of bonding resin (dentin) : application of dentin bonding agent Group II : (ceramic) : sandblasting - application of bonding resin (dentin) : application of dentin bonding agent Group III : (ceramic) : application of bonding resin (dentin) : application of dentin bonding agent Group IV : (ceramic) : HF etching - silane treatment - application of bonding resin (dentin) : no dentin bonding procedure Dentin specimens and ceramic discs were cemented with dual cure resin cement, and went through thermocycling. Compressive stress es were loaded on the centers of ceramic discs with Instron test-ing machine, and fracture strengths resistance for catastrophic fracture were measured The results were as follows. 1. The group I showed the highest fracture resistance. The next was group II And group III, IV followed. 2. There was a significant difference in the mean value of fracture strengths between group I and group III (p<0.05), but no significant differences between group I and group II, and group II and group III (p>0.05). 3. There was a significant difference in the mean value of fracture strengths between group I and group IV (p<0.05).

  • PDF

불산 처리 시간이 강화형 전부도재관과 레진 시멘트의 전단 결합강도에 미치는 영향 (EFFECT OF ETCHING TIME ON SHEAR BOND STRENGTH OF RESIN CEMENTS TO REINFORCED ALL-CERAMIC CROWNS)

  • 김경일;최근배;안승근;박찬운
    • 대한치과보철학회지
    • /
    • 제42권5호
    • /
    • pp.501-513
    • /
    • 2004
  • Purpose : The purpose of this study was to evaluate the effects of etching time on shear bond strength of four resin cements to IPS Empress 2 ceramic. Material and Methods: Forty rectangular shape ceramic specimens ($10{\times}15{\times}3.5mm$ size) were used for this study. The ceramic specimens divided into four groups and were etched with 10% hydrofluoric acid for 0, 10, 30, 60, 180, 300, 420, 600, and 900 seconds respectively. Etched surfaces of ceramic specimens were coated with ceramic adhesive system and bonded with four resin cement (Variolink II, Panavia F, Panavia 21, Super-Bond C&B) using acrylic glass tube. All cemented specimens were tested under shear loading untill fracture on universal testing machine at a crosshead speed 1mm/min: the maximum load at fracture (kg) was recored. Shear bond strengh data were analyzed with oneway analysis of variance and Tukey HSD tests (p<.05). Etched ceramic surfaces (0-, 60-, 300-, and 600-seconds etching period) and fracture surfaces after shear testing were examined mophologically using scanning electron microscopy. Results : Ceramic surface treatment with 10% hydrofluoric acid improved the bond strength of three resin cement except for Super-Bond C&B cement. Variolink II (41.0$\pm$2.4 MPa) resin cement at 300-seconds etching time showed statistically higher shear bond strength than the other resin cements (Panavia F: 28.3$\pm$2.3 MPa, Panavia 21: 21.5$\pm$2.2 MPa, Super-Bond C&B: 16.7$\pm$1.6 MPa). Ceramic surface etched with 10% hydrofluoric acid for 300 seconds showed more retentive surface texture. Conclusion: Within the limitation of this study, Variolink II resin cement are suitable for cementation of Empress 2 all-ceramic restorations and etching with 10% hydrofluoric acid for 180 to 300 seconds is required to enhance the bond strength.

Utilization of ladle furnace slag from a steelwork for stabilization of soil cement

  • Ayawanna, Jiratchaya;Kingnoi, Namthip;Sukchaisit, Ochakkraphat;Chaiyaput, Salisa
    • Geomechanics and Engineering
    • /
    • 제31권2호
    • /
    • pp.149-158
    • /
    • 2022
  • Ladle furnace (LF) slag, waste from the steel-making process, was incorporated to improve the compressive strength of soil cement. LF slag was mixed to replace the cement in the soil-cement samples with wt% ratio 20:0, 15:5, and 10:10 of cement and slag, respectively. LF slag in the range of 5, 10, and 20 wt% was also separately added to the 20-wt% cement-treated soil samples. The soil-cement mixed LF slag samples were incubated in a plastic wrapping for 7, 14, and 28 days. The strength of soil cement was highly developed to be higher than the standard acceptable value (0.6 MPa) after incorporating slag into soil cement. The mixing of LF slag resulted in more hydration products for bonding soil particles, and hence improved the strength of soil cement. With the LF slag mixing either a replacement or additive materials in soil cement, the LF slag to cement ratio is considered to be less than 1, while the cement content should be more than 10 wt%. This is to promote a predominant effect of cement hydration by preventing the partially absorbed water on slag particles and keeping sufficient water content for the cement hydration in soil cement.

시멘트의 특성과 사용 온도가 모르터의 물성에 미치는 영향 (Effects of Portland Cement Characters and Working Temperature on the Physical Properties of Cement Mortars)

  • 김원기;김창은
    • 한국세라믹학회지
    • /
    • 제37권5호
    • /
    • pp.410-417
    • /
    • 2000
  • In this study the effects of specifics surface area of cement, addition amount of gypsum and substitution ratio of gypsum anhydrite ont he physical properties of cement mortars were investigated by measruements of setting time, flow, compressive strength and hydration heat evolution rate. The results showed that fluidity of mortars was increased by 40 wt.% of maximum flow change with the decreasing specific surface area of cement from 3,500$\textrm{cm}^2$/g to 3,300${\pm}$50$\textrm{cm}^2$/g and affected by the relationship between the cement and balancing between the chemical activityof cement and solubility of calcium sulfate are desirable to prevent the fluidity of concrete from decreasing by high temperature in summer season.

  • PDF