• Title/Summary/Keyword: ceramic cement

Search Result 530, Processing Time 0.025 seconds

Synthesis and Hydration of Modified Belite Cement Clinker (Modified Belite Cement Clinker의 합성 및 수화반응)

  • 김창범;한기성;최상흘
    • Journal of the Korean Ceramic Society
    • /
    • v.27 no.2
    • /
    • pp.195-200
    • /
    • 1990
  • For the development of low energy cement, the belite cement clinker of calcium sulphoaluminate ferrite type was synthesized at 130$0^{\circ}C$ and containing C2S, C4A3S as the major minerals along with C3A, C4AF, CS by using limestone, dolomite, clay, iron ore, gypsum and alumina as raw materials. At over 130$0^{\circ}C$, C4A3S was decomposed and thus C3A was increased. When hydrated, this cement was hardened, producing ettringite, CSH, etc.

  • PDF

The Influence of Polymers on the Hydration of Modified Cement System (속경형시멘트의 수화거동에서 폴리머의 영향)

  • Park, Phil-Hwan;Lee, Kyoung Hee
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.9
    • /
    • pp.496-501
    • /
    • 2007
  • The properties of the polymer-modified mortars are influenced by the polymer film, cement hydrates and the combined structure between the organic and inorganic phases. Also, this quality of polymer modified cement strongly depend on weather condition. To overcome this problem, polymer-modified cement based on rapid setting cement mortars were prepared by varying polymer/cement mass ratio (P/C) with a constant water/cement mass ratio of 0.5. The effect of polymer on the hydration of this polymer cement is studied on different curing temperature. The results showed that the polymer mortar which is modified with rapid setting cement have superior physical strength properties on independent curing temperature. In addition the PIC ratio, the compressive strength, flexural strength, tensile strength and adhesion strength of mortar is enhances and polymer-modified cement based on rapid setting cement is more beneficial to the improvement of the mortar properties in jobsite.

Analysis of Characteristics of Slurry and Thermal Insulation Materials Using Hauyne Cement

  • Kim, Tae Yeon;Jo, Ki Sic;Chu, Yong Sik
    • Journal of the Korean Ceramic Society
    • /
    • v.56 no.5
    • /
    • pp.468-473
    • /
    • 2019
  • This study focused on manufacturing an inorganic insulation material set with various amounts of calcium-sulfoaluminate (CSA) (hauyne) content for enhancing both workability (demolding, handling) and the high thermal insulating property. To carry out the experiment, the amounts of CSA utilized were 5%, 10%, 15%, and 20%, with anhydrous gypsum added in equal proportion to produce a stable formation. As the content of CSA increased, a sinking phenomenon occurred because of the hydration reaction from the slurry, so it was difficult to utilize a retarder normally used in the cement manufacturing process. However, an RCOOM surfactant was able to solve the local clumping problem from cement and CSA and obtain a rapid retarding effect, so it was included in this process at 0.3%. Furthermore, the cement fineness was not 7000 ㎠/g but rather 3300 ~ 4000 ㎠/g to prevent a rapid temperature increase in the slurry. The specific gravity of the sample manufactured with 20% CSA was approximately 0.11 g/㎤, and its thermal conductivity was 0.041 W/m·K, providing an excellent insulating property.

The Fluidity of Cement Pastes with Fly Ashes Containing a Lot of Unburned Carbon

  • Lee, Seung-Heun;Kawakami, Akira;Sakai, Etsuo;Daimon, Masaki
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.3
    • /
    • pp.219-224
    • /
    • 2003
  • Fly ashes containing 6.1~16.5 wt% of unburned carbon were treated thermally at 500$^{\circ}C$ for 3 h and thus, the content of unburned carbon was decreased below 2.1 wt%, the range of particle size distribution became narrower and the mean particle size became smaller. Besides, the properties of particles in fly ashes were improved, particularly the particle shape became close to a spherical type. The fluidity of cement pastes containing fly ashes treated previously at 500$^{\circ}C$ for 3 h was increased much than that of cement pastes containing original fly ashes. When the added amount of superplasticizer was over the saturation amount, there was no correlation between the amount of unburned carbon in fly ashes and the apparent viscosity of cement pastes actually. On the contrary, when the added amount of superplasticizer was below the saturation amount, there was a correlation.

Setting and Hydroxyapatite Formation of Bioactive Glass Bone Cement (생체활성 유리 골 시멘트의 응결 및 수산화 아파타이트 형성)

  • Lim, Hyoung-Bong;Kim, Cheol-Young
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.11 s.282
    • /
    • pp.770-776
    • /
    • 2005
  • Hardening and hydroxyapatite(HAp) formation behavior of the bioactive cements in the system of $CaO-SiO_{2}-P_{2}O_{5}$ glasses and the corresponding glass-ceramics were studied. DCPD (Dicalcium Phosphate Dihydrate: $CaHPO_4{\cdot}2H_2O$) and DCPA (Dicalcium Phosphate Anhydrous: $CaHPO_4$) were developed when the prepared glass and glass-ceramic powders were mixed with three different solutions. The DCPD and DCPA transformed to HAp when the cement was soaked in Simulated Body Fluid (SBF), and this HAp formation strongly depended on the releasing capacity of $Ca^{2+}$ ions from the cements. The glass-ceramic containing apatite showed fast setting, but no HAp formation was observed because no $Ca^{2+}$ ions were released from this glass-ceramics. The compressive strength of the cements increased with reaction time in SBF until all DCPD and DCPA transformed to HAp.

Current perspectives of bio-ceramic technology in endodontics: calcium enriched mixture cement - review of its composition, properties and applications

  • Utneja, Shivani;Nawal, Ruchika Roongta;Talwar, Sangeeta;Verma, Mahesh
    • Restorative Dentistry and Endodontics
    • /
    • v.40 no.1
    • /
    • pp.1-13
    • /
    • 2015
  • Advancements in bio-ceramic technology has revolutionised endodontic material science by enhancing the treatment outcome for patients. This class of dental materials conciliates excellent biocompatibility with high osseoconductivity that render them ideal for endodontic care. Few recently introduced bio-ceramic materials have shown considerable clinical success over their early generations in terms of good handling characteristics. Calcium enriched mixture (CEM) cement, Endosequence sealer, and root repair materials, Biodentine and BioAggregate are the new classes of bio-ceramic materials. The aim of this literature review is to present investigations regarding properties and applications of CEM cement in endodontics. A review of the existing literature was performed by using electronic and hand searching methods for CEM cement from January 2006 to December 2013. CEM cement has a different chemical composition from that of mineral trioxide aggregate (MTA) but has similar clinical applications. It combines the biocompatibility of MTA with more efficient characteristics, such as significantly shorter setting time, good handling characteristics, no staining of tooth and effective seal against bacterial leakage.

Comparison between Shear and Tensile Adhesion Strength of Cement for Ceramic Tiles and an Experimental Evaluation on the Cutting Effect of Tile for Tensile Adhesion Strength (타일 시멘트 전단접착강도와 인장부착강도 비교 및 인발부착강도 타일커팅 영향에 관한 실험적 평가)

  • Lee, Sang-Hyun;Ki, Jun-Do;Cho, Hong-Bum;Kim, Young-Sun;Moon, Hyung-Jae;Jeon, Hyun-Su
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.05a
    • /
    • pp.181-182
    • /
    • 2021
  • Selecting a proper tile cement for ceramic tile is important to secure tile construction quality. But there is some ambiguity in standards about evaluating adhesion test such as using KS L 1593 in Lab test but using KS L 1592 in site. So, this study aims to how to select proper tile cement for securing adhesion strength in site considering both tensile and shear adhesion strength of cement for ceramic tile. Also, when doing tensile adhesion test in site, there may be adhesion drop because of cutting tile with grinder. As a result, drop of adhesion strength is about 9% ans quality manager consider these factor and should select proper tile cement.

  • PDF

THE STUDY ON THE COLOR STABILITY OF RESIN CEMENT USED IN ALL CERAMIC CROWN (전부도재관에 사용되는 레진시멘트의 색안정성에 관한 연구)

  • Lee Tae-Hee;Lee Young-Soo;Park Won-Hee
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.42 no.1
    • /
    • pp.41-48
    • /
    • 2004
  • Statement of problem : The Cement as well as restoration required esthetics for making natural color restoration. Purpose : The purpose of this research is to evaluate color stability of restoration intermediated by resin cement which is used for cementation of all ceramic crown. Material and method : After making Empress 2 ingot into the size of $10mm{\times}10mm{\times}1mm$ according to indication, it glazed and made 48 Empress 2 blocks. Three kinds of resin cement(Rely-X, Variolink 2, Choice) having same shade cemented between Empress 2 blocks and Ivory shade tiles and made 48 specimens in the thickness of $30{\mu}m$ and $80{\mu}m$. After measureing color difference using spectorphotomenter, the result of this study were as follows. Results : The color difference of resin cement used in experiment increased in the order Rely-X, Variolink 2. As the thickness of cement increases, the color difference of all kinds of cement found statistically sifnificant difference but, this result is clinically acceptable. Conclusion : More resarch would have to be done in order to decrease the color difference as cement's thickness.

Bonding for dental ceramic (임상가를 위한 특집 2- 세라믹 수복물의 접착)

  • Seo, Deog-Gyu
    • The Journal of the Korean dental association
    • /
    • v.50 no.7
    • /
    • pp.377-383
    • /
    • 2012
  • Recently, ceramic materials have become a popular choice for dentists performing esthetic indirect restorations. The longevity and success of ceramic dental restorations depends on the adhesive procedures of resin cements. However, dental ceramics can be classified in various ways, depending on the compositions. Also, the applications for resin cement require multiple clinical steps. Therefore, understanding the different ceramic substrates involved in each procedure, as well as the proper adhesive steps for the resin cements is important to us for long-term clinical success.

EFFECT OF SURFACE TREATMENTS OF ZIRCONIA CERAMIC ON THE BOND STRENGTH OF RESIN CEMENTS (Zirconia ceramic의 표면처리 방법이 레진시멘트의 결합강도에 미치는 영향)

  • Kim, Chang-Hun;Jeon, Young-Chan;Jeong, Chang-Mo;Lim, Jang-Seop
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.42 no.4
    • /
    • pp.386-396
    • /
    • 2004
  • Statement of problem: It is not clear how to make a stable bonding between zirconia ceramic and resin cement. And the study about surface treatment of zirconia ceramic or bonding resin cement are not enough. Purpose: To measure and compare the shear bond strength of some resin cements on zirconia ceramic after different surface treatments. Material and method: 48 ceramic discs were made of 3 ceramic materials, zirconia ceramics (Zi-Ceram), heat-pressed ceramics (IPS Empress 2) and slip cast alumina ceramics (In-Ceram). According to the surface treatments of ceramic specimens and resin cements, specimens were classified into 6 groups and each group was composed of 8 specimens. For the surface treatment of Zi-Ceram group (test group), sandblasting and diamond bur preparation were applied and Superbond C&B and Panavia F were bonded respectively. For IPS Empress 2 group (control group), Variolink II was bonded after sandblasting, acid etching, silanization and for In-Ceram ALUMINA group (control group), Panavia F was bonded after sandblasting. After storing specimens in distilled water for 24 hours, the shear bond strength was measured by the universal testing machine. Results and conclusion: 1. Zi-Ceram group with Superbond C&B cement showed higher bond strength than with Panavia F cement regardless to the surface treatments (p<0.05). 2. In Zi-Ceram group with Superbond C&B cement, sandblasting treatment group (12.1MPa) showed higher bond strength than diamond bur treatment group (7.7MPa) (p<0.05). In Zi-Ceram group with Panavia F cement, there were no significant differences in the bond strength according to the surface treatments (p>0.05). 3. Zi-Ceram group with sandblasting and Superbond C&B cement (12.1MPa) showed the highest bond strength. The bond strength of this group was not significantly different from In-Ceram ALUMINA group (10.4MPa) (p>0.05) and lower than IPS Empress 2 group (15.9MPa) (p<0.05).