본 논문에서는 남성화자 혹은 여성화자인지를 구분하는 성별인식 알고리즘을 제안한다. 본 논문에서는 남성화자와 여성화자의 특징벡터를 분석하며, 이러한 남녀의 특징벡터를 이용하여 신경회로망에 의한 제안한 성별인식에 대한 인식실험을 수행한다. 신경회로망의 입력신호로 사용한 특징벡터로는 10차의 LPC 켑스트럼 계수, 12차의 LPC 켑스트럼 계수, 12차의 FFT 켑스트럼 및 1차의 RMS, 12차의 LPC 켑스트럼 및 8차의 FFT 스펙트럼들이다. 본 실험에서는 특히 12차의 LPC 켑스트럼 및 8차의 저역 FFT 스펙트럼의 특징벡터를 사용하여 20-20-2의 네트워크에 의하여 신경회로망이 학습되었다. 실험결과, 남성화자에 대하여 학습 시에는 평균 99.8%, 여성화자에 대해서는 평균 96.5%의 성별인식률이 구해졌다.
본 논문에서는, 음성 인식률 향상을 위하여 청각 특성을 기반으로 한 GFCC(gammatone filter frequency cepstrum coefficients) 파라미터를 음성 특징 파라미터로 제안한다. 그리고 전화망을 통해 얻은 고립단어를 대상으로 인식실험을 수행하였다. 성능비교를 위하여 MFCC(mel frequency cepstrum coefficients)와 LPCC(linear predictive cepstrum coefficient)를 사용하여 인식 실험을 하였다. 또한, 각 파라미터에 대하여 전화망의 채널 왜곡 보상기법으로 CMS(cepstral mean subtraction)를 도입한 방법과 적용시키지 않은 방법으로 인식실험을 하였다. 실험 결과로서, GFCC를 사용하여 인식을 수행한 방법이 다른 파라미터를 사용한 방법에 비해 향상된 결과를 얻었다.
유도 전동기는 항공 산업, 자동차 산업 등의 산업 현장에서 중요한 역할을 하고 있으며, 이러한 유도 전동기의 고장으로 인한 피해를 최소화하기 위해 유도 전동기의 고장 검출 및 분류 시스템의 개발이 중요한 문제로 대두되고 있다. 이에 본 논문에서는 정상 및 각종 비정상 상태의 유도 전동기 진동 신호에 대해 부분 자기 상관(partial autocorrelation, PARCOR) 계수, 로그 스펙트럼 파워(log spectrum powers, LSP), 캡스트럼 계수의 평균값(cepstrum coefficients mean, CCM), 멜 주파수 캡스트럼 계수(mel-frequency cepstrum coefficient, MFCC)의 네 가지 특징 벡터를 신경 회로망의 입력으로 사용하여 유도 전동기의 고장을 검출하고 분류하였다. 고장 분류를 위한 최적의 특징 벡터를 찾기 위해 추출하는 특징의 수를 2에서 20으로 바꾸어 가며 분류 성능을 평가한 결과 CCM을 제외한 나머지의 경우 5~6의 특징만으로 분류 정확도가 거의 100%에 가까운 결과를 보였다. 또한 본 논문에서는 실제 산업 현장에서 진동 신호 취득 시 포함될 수 있는 잡음을 고려하여 취득한 신호에 백색 잡음(white Gaussian noise)을 인위적으로 추가하여 실험한 결과 LSP, PARCOR, MFCC 순으로 잡음 환경에 강인한 특징 벡터임을 확인할 수 있었다.
본 논문에서는 음성 인식과 화자 인식에서 채널 변이 정규화를 위해 널리 사용되는 전통적인 켑스트럴 평균차감법 (CMS: Cepstral Mean Subtraction)의 성능을 향상시키기 위한 정규화 방법을 제안한다. 기존의 켑스트럴 평균 차감법은 장구간 켑스트럼의 평균으로 채널 성분을 추정하므로 유성음의 포먼트에 의해 채널 성분이 편향되는 단점을 가진다. 제안된 포먼트 평활화 켑스트럴 평균 차감법 (FBCMS; Formant-broadened CMS)은 켑스트럼으로부터 변환된 로그 스펙트럼에서 포먼트 위치를 쉽게 찾을 수 있고, 포먼트는 전극점 모델로 표현되는 성도 전달 함수의 우세 극점에 대응된다는 사실에 근거한다. 따라서 제안된 방법은 켑스트럼으로부터 음성의 포먼트를 구하고, 이로부터 포먼트의 대역폭을 확장한 켑스트럼을 구한 후 평균함으로써 채널 켑스트럼 성분으로부터 우세 극점들의 영향을 제거한다. 전극점 모델의 우세 극점을 얻기 위해 다항식 인수분해 과정을 거치지 않으므로 연산량을 줄일 수 있으며 포먼트에 해당하는 우세 극점만으로 선택적으로 처리할 수 있다. 본 연구에서는 4가지의 모의 채널을 이용하여 전통적인 켑스트럴 평균 차감법, 극점 필터화 켑스트럴 평균 차감법 (Pole-filtered CMS) 그리고 제안된 방법의 비교실험을 수행하였다. 실제 채널 켑스트럼과 추정된 채널 켑스트럼과의 거리를 측정하는 실험에서 음성에 의한 편향을 완화시켜 실제 채널에 보다 가까운 평균 켑스트럼을 얻을 수 있음을 확인하였다. 또한 문장독립 화자 식별에서 제안된 방법은 전통적인 켑스트럴 평균 차감법보다 우세하고 극점 필터화 켑스트럴 평균 차감법 (Pole-filtered CU)과는 비슷한 결과를 보였다. 결과적으로 제안된 방법은 전통적인 켑스트럴 평균 차감법에 기반하여 효과적인 채널 정규화가 가능하다는 것을 보였다.
In this paper, we propose a voice personality transformation method which makes one person's voice sound like another person's voice. In order to transform the voice personality, vocal tract transfer function is used as a transformation parameter. Comparing with previous methods, the proposed method can obtain high-quality transformed speech with low computational complexity. Conversion between the vocal tract transfer functions is implemented by a linear mapping based on soft clustering. In this process, mean LPC cepstrum coefficients and mean removed LPC cepstrum modeled by the low dimensional vector are used as transformation parameters. To evaluate the performance of the proposed method, mapping rules are generated from 61 Korean words uttered by two male and one female speakers. These rules are then applied to 9 sentences uttered by the same persons, and objective evaluation and subjective listening tests for the transformed speech are performed.
본 논문에서는 직교 벡터 공간 변환을 이용한 새로운 음성 개성 변환 알고리즘을 제안하였다. 음성 개성 변환이란 임의 환자(source)가 가지고 있는 몇 개의 특징 변수를 다른 화자(target)의 특징 변수로 변환하는 기법이다. 본 논문에서는 LPC 켑스트럼 계수와 여기 신호의 스펙트럼, 그리고 피치 궤적을 변환하여 음성 개성변환을 구현하였다. LPC 켑스트럼 계수의 변환을 위해 직교 벡터 공간 변환 기법이 제안되었다. 이 기법은 KL(Karhunen-Loeve)변환을 이용한 principle component의 분리와 최소 자승 오차를 갖는 선형 좌표 변환을 통해 LPC 켑스트럼의 변환을 수행한다. 또한, 화자간의 운율적인 특징을 변환하기 위해 피치 궤적 변환 기법이 제안되었다. 피치 궤적 변환을 위하여 먼저 두 화자간의 기준 피치 패턴의 작성하고 기준 패턴간의 대응 관계를 추정한 후 이를 이용하여 source 화자의 피치 패턴이 target 피치 패턴으로 변환되도록 하였다. 컴퓨터를 이용한 모의 실험 결과 제안된 알고리즘은 객관적인 평가와 주관적인 평가에 있어서 우수한 성능을 나타내었다.
Speaker verification can be classified in two categories, text-dependent speaker verification and text-independent speaker verification. In this paper, we discuss text-dependent speaker verification. Text-dependent speaker verification system determines whether the sound characteristics of the speaker are equal to those of the specific person or not. In this paper we obtain the speaker data using a sound card in various noisy conditions, apply a new Hidden LMS (Least Mean Square) adaptive algorithm to it, and extract LPC (Linear Predictive Coding)-cepstrum coefficients as feature vectors. Finally, we use a competitive learning neural network for speaker verification. The proposed hidden LMS adaptive filter using a neural network reduces noise and enhances features in various noisy conditions. We construct a separate neural network for each speaker, which makes it unnecessary to train the whole network for a new added speaker and makes the system expansion easy. We experimentally prove that the proposed method improves the speaker verification performance.
The Most Serious Engine Faults Are Those That Occur Within The Engine. Traditional Engine Fault Diagnosis Is Highly Dependent On The Engineer'S Technical Skills And Has A High Failure Rate. Neural Networks And Support Vector Machine Were Proposed For Use In A Diagnosis Model. In This Paper, Noisy Sound From Faulty Engines Was Represented By The Mel Frequency Cepstrum Coefficients, Zero Crossing Rate, Mean Square And Fundamental Frequency Features, Are Used In The Hidden Markov Model For Diagnosis. Our Experimental Results Indicate That The Proposed Method Performs The Diagnosis With A High Accuracy Rate Of About 98% For All Eight Fault Types.
최근 음성 감정 인식(Speech Emotion Recognition, SER)분야는 음성 특징과 모델링을 활용하여 인식률을 개선하기 위한 많은 연구가 진행되고 있다. 기존 음성 감정 인식의 정확도를 높이기 위한 모델링 연구 이외에도 음성 특징을 다양한 방법으로 활용하는 연구들이 진행되고 있다. 본 논문에서는 음성 감정이 시간 흐름과 연관이 있음을 착안하여 시계열 방식으로 음성파일을 시간 구간별로 분리한다. 파일 분리 이후, 음성 특징인 Mel, Chroma, zero-crossing rate (ZCR), root mean square (RMS), mel-frequency cepastral coefficients (MFCC)를 추출하여서 순차적 데이터 처리에 사용하는 순환형 신경망 모델에 적용하여 음성 데이터에서 감정을 분류하는 모델을 제안한다. 제안한 모델은 librosa를 사용하여 음성 특징들을 모든 파일에서 추출하여, 신경망 모델에 적용하였다. 시뮬레이션은 영어 데이터 셋인 Interactive Emotional Dyadic Motion Capture (IEMOCAP)을 이용하여 recurrent neural network (RNN), long short-term memory (LSTM) and gated recurrent unit(GRU)의 모델들의 성능을 비교 및 분석하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.