본 논문에서는 3전극법으로 피검자의 이두박근과 삼두박근에서 검출한 표면 근전도 신호를 LPC 켑스트럼 계수를 이용하여 유클리드 및 가중 켐스트럼 거리 측정법을 통하여 8가지 팔 운동에 대한 기능분리 및 판별 인식에 관한 실험을 하였다. 유클리드 켑스트럼 거리 측정법의 경우,계수의 수가 8,10,12,14 등으로 증가함에 따라 동작기능 인식률도 각각 94.69, 95.63, 96.56, 96.88[%]로 증가하였으나 인식률의 증가폭은 상대적으로 적으며 가중 켑스트럼 거리 측정법의 경우에는 각각 91.88, 95, 99.69, 96.63[%]의 인식률을 보였다.
본 논문에서는, 음성 인식률 향상을 위하여 청각 특성을 기반으로 한 GFCC(gammatone filter frequency cepstrum coefficients) 파라미터를 음성 특징 파라미터로 제안한다. 그리고 전화망을 통해 얻은 고립단어를 대상으로 인식실험을 수행하였다. 성능비교를 위하여 MFCC(mel frequency cepstrum coefficients)와 LPCC(linear predictive cepstrum coefficient)를 사용하여 인식 실험을 하였다. 또한, 각 파라미터에 대하여 전화망의 채널 왜곡 보상기법으로 CMS(cepstral mean subtraction)를 도입한 방법과 적용시키지 않은 방법으로 인식실험을 하였다. 실험 결과로서, GFCC를 사용하여 인식을 수행한 방법이 다른 파라미터를 사용한 방법에 비해 향상된 결과를 얻었다.
본 논문에서는 화자인식 시스템의 인식율 향상을 도모하기 위하여 요소의 선택 및 판단 논리의 문제를 고찰하였다. 또한 화자인식 실험을 수행하는 과정에서 기준패턴의 작성이 인식율에 어떠한 영향을 미치는 가를 아울러 검토해 보았다. LPC, PARCOR 계수, LPC-cepstrum 계수등을 인식 요소로 사용하여 화자확인 오차율을 측정한 결과, 기준 패턴의 작성방법에 관계 없이 LPC-cepstrum계수의 성능이 LPC나 PARCOR 계수의 성능에 비해 우수한 것으로 나타났다. 또 화자인식율을 향상시키기 위하여 일반화된 거리 개념을 도입한 새로운 판단 논리를 제안하였다. 제안된 판단 논리는 기준화자 및 외부화자의 통계적 성질을 동시에 고려하여 각 요소들에 서로 다른 가중치를 둔다는 점이 기존의 방법들에 비해 다르다. 화자적인 실험결과 제안된 판단 논리를 적용한 경우가 기존의 방법들에 비해서 인식율이 향상된 것을 관찰할 수 있었다.
In this paper, the speech parameter fusion method is studied to improve the performance of the conventional emotion recognition system. For this purpose, the combination of the parameters that show the best performance by combining the cepstrum parameters and the various pitch parameters used in the conventional emotion recognition system are selected. Various pitch parameters were generated using numerical and statistical methods using pitch of speech. Performance evaluation was performed on the emotion recognition system using Gaussian mixture model(GMM) to select the pitch parameters that showed the best performance in combination with cepstrum parameters. As a parameter selection method, sequential feature selection method was used. In the experiment to distinguish the four emotions of normal, joy, sadness and angry, fifteen of the total 56 pitch parameters were selected and showed the best recognition performance when fused with cepstrum and delta cepstrum coefficients. This is a 48.9% reduction in the error of emotion recognition system using only pitch parameters.
Journal of information and communication convergence engineering
/
제19권3호
/
pp.148-154
/
2021
With the advent of context-aware computing, many attempts were made to understand emotions. Among these various attempts, Speech Emotion Recognition (SER) is a method of recognizing the speaker's emotions through speech information. The SER is successful in selecting distinctive 'features' and 'classifying' them in an appropriate way. In this paper, the performances of SER using neural network models (e.g., fully connected network (FCN), convolutional neural network (CNN)) with Mel-Frequency Cepstral Coefficients (MFCC) are examined in terms of the accuracy and distribution of emotion recognition. For Ryerson Audio-Visual Database of Emotional Speech and Song (RAVDESS) dataset, by tuning model parameters, a two-dimensional Convolutional Neural Network (2D-CNN) model with MFCC showed the best performance with an average accuracy of 88.54% for 5 emotions, anger, happiness, calm, fear, and sadness, of men and women. In addition, by examining the distribution of emotion recognition accuracies for neural network models, the 2D-CNN with MFCC can expect an overall accuracy of 75% or more.
유도 전동기는 항공 산업, 자동차 산업 등의 산업 현장에서 중요한 역할을 하고 있으며, 이러한 유도 전동기의 고장으로 인한 피해를 최소화하기 위해 유도 전동기의 고장 검출 및 분류 시스템의 개발이 중요한 문제로 대두되고 있다. 이에 본 논문에서는 정상 및 각종 비정상 상태의 유도 전동기 진동 신호에 대해 부분 자기 상관(partial autocorrelation, PARCOR) 계수, 로그 스펙트럼 파워(log spectrum powers, LSP), 캡스트럼 계수의 평균값(cepstrum coefficients mean, CCM), 멜 주파수 캡스트럼 계수(mel-frequency cepstrum coefficient, MFCC)의 네 가지 특징 벡터를 신경 회로망의 입력으로 사용하여 유도 전동기의 고장을 검출하고 분류하였다. 고장 분류를 위한 최적의 특징 벡터를 찾기 위해 추출하는 특징의 수를 2에서 20으로 바꾸어 가며 분류 성능을 평가한 결과 CCM을 제외한 나머지의 경우 5~6의 특징만으로 분류 정확도가 거의 100%에 가까운 결과를 보였다. 또한 본 논문에서는 실제 산업 현장에서 진동 신호 취득 시 포함될 수 있는 잡음을 고려하여 취득한 신호에 백색 잡음(white Gaussian noise)을 인위적으로 추가하여 실험한 결과 LSP, PARCOR, MFCC 순으로 잡음 환경에 강인한 특징 벡터임을 확인할 수 있었다.
In this study, the recognition experiments for Korean vowel are performed using peripheral auditory model. In addition, for the purpose of objective comparison, the recognition experiments are performed by extracting LPC cepstrum coefficients for the same speech data. The results are as follows. 1) The time and the frequency responses of the auditory model show that important features of input signal are involved in the responses of inner ear and auditory nerve. 2) The recognition results for Korean vowel show that the recognition rate by auditory model output is higher than the recognition rate by LPC cepstrum coefficients. 3) The adaptation phenomenon of auditory nerve provides useful characteristics for the discrimination of vowel signal.
Journal of Electrical Engineering and information Science
/
제2권6호
/
pp.20-27
/
1997
We present a method of electromyographic(EMG) pattern recognition to identify motion commands for the control of a prosthetic arm by evidence accumulation with multiple parameters. Integral absolute value, variance, autoregressive(AR) model coefficients, linear cepstrum coefficients, and adaptive cepstrum vector are extracted as feature parameters from several time segments of the EMG signals. Pattern recognition is carried out through the evidence accumulation procedure using the distances measured with reference parameters. A fuzzy mapping function is designed to transform the distances for the application of the evidence accumulation method. Results are presented to support the feasibility of the suggested approach for EMG pattern recognition.
In this paper, we present a speaker-dependent Korean Isolated digit recognition system. At the preprocessing step, LPC cepstral coefficients are extracted from speech signal, and are used as the input of a Frequency Sensitive Competitive Learning(FSCL) neural network. We carried out the postprocessing based on the winning-neuron histogram. Experimetal results Indicate the possibility of commercial auto-dial telephones.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.