• 제목/요약/키워드: cepstrum coefficients

검색결과 68건 처리시간 0.022초

LPC 켑스트럼 계수를 이용한 EMG 신호의 기능 인식에 관한 연구 (A Study on Function Recognition of EMG Signal Using LPC Cepstrum Coefficients)

  • 왕성문;정태윤;최윤호;변윤식;박상희
    • 대한전자공학회논문지
    • /
    • 제27권2호
    • /
    • pp.126-134
    • /
    • 1990
  • 본 논문에서는 3전극법으로 피검자의 이두박근과 삼두박근에서 검출한 표면 근전도 신호를 LPC 켑스트럼 계수를 이용하여 유클리드 및 가중 켐스트럼 거리 측정법을 통하여 8가지 팔 운동에 대한 기능분리 및 판별 인식에 관한 실험을 하였다. 유클리드 켑스트럼 거리 측정법의 경우,계수의 수가 8,10,12,14 등으로 증가함에 따라 동작기능 인식률도 각각 94.69, 95.63, 96.56, 96.88[%]로 증가하였으나 인식률의 증가폭은 상대적으로 적으며 가중 켑스트럼 거리 측정법의 경우에는 각각 91.88, 95, 99.69, 96.63[%]의 인식률을 보였다.

  • PDF

인지적 청각 특성을 이용한 고립 단어 전화 음성 인식 (Isolated-Word Speech Recognition in Telephone Environment Using Perceptual Auditory Characteristic)

  • 최형기;박기영;김종교
    • 대한전자공학회논문지TE
    • /
    • 제39권2호
    • /
    • pp.60-65
    • /
    • 2002
  • 본 논문에서는, 음성 인식률 향상을 위하여 청각 특성을 기반으로 한 GFCC(gammatone filter frequency cepstrum coefficients) 파라미터를 음성 특징 파라미터로 제안한다. 그리고 전화망을 통해 얻은 고립단어를 대상으로 인식실험을 수행하였다. 성능비교를 위하여 MFCC(mel frequency cepstrum coefficients)와 LPCC(linear predictive cepstrum coefficient)를 사용하여 인식 실험을 하였다. 또한, 각 파라미터에 대하여 전화망의 채널 왜곡 보상기법으로 CMS(cepstral mean subtraction)를 도입한 방법과 적용시키지 않은 방법으로 인식실험을 하였다. 실험 결과로서, GFCC를 사용하여 인식을 수행한 방법이 다른 파라미터를 사용한 방법에 비해 향상된 결과를 얻었다.

화자인식을 위한 음성 요소들의 성능분석 및 새로운 판단 논리 (Performance Analysis of Speech Parameters and a New Decision Logic for Speaker Recognition)

  • 이혁재;이병기
    • 대한전자공학회논문지
    • /
    • 제26권7호
    • /
    • pp.146-156
    • /
    • 1989
  • 본 논문에서는 화자인식 시스템의 인식율 향상을 도모하기 위하여 요소의 선택 및 판단 논리의 문제를 고찰하였다. 또한 화자인식 실험을 수행하는 과정에서 기준패턴의 작성이 인식율에 어떠한 영향을 미치는 가를 아울러 검토해 보았다. LPC, PARCOR 계수, LPC-cepstrum 계수등을 인식 요소로 사용하여 화자확인 오차율을 측정한 결과, 기준 패턴의 작성방법에 관계 없이 LPC-cepstrum계수의 성능이 LPC나 PARCOR 계수의 성능에 비해 우수한 것으로 나타났다. 또 화자인식율을 향상시키기 위하여 일반화된 거리 개념을 도입한 새로운 판단 논리를 제안하였다. 제안된 판단 논리는 기준화자 및 외부화자의 통계적 성질을 동시에 고려하여 각 요소들에 서로 다른 가중치를 둔다는 점이 기존의 방법들에 비해 다르다. 화자적인 실험결과 제안된 판단 논리를 적용한 경우가 기존의 방법들에 비해서 인식율이 향상된 것을 관찰할 수 있었다.

  • PDF

특징 선택과 융합 방법을 이용한 음성 감정 인식 (Speech Emotion Recognition using Feature Selection and Fusion Method)

  • 김원구
    • 전기학회논문지
    • /
    • 제66권8호
    • /
    • pp.1265-1271
    • /
    • 2017
  • In this paper, the speech parameter fusion method is studied to improve the performance of the conventional emotion recognition system. For this purpose, the combination of the parameters that show the best performance by combining the cepstrum parameters and the various pitch parameters used in the conventional emotion recognition system are selected. Various pitch parameters were generated using numerical and statistical methods using pitch of speech. Performance evaluation was performed on the emotion recognition system using Gaussian mixture model(GMM) to select the pitch parameters that showed the best performance in combination with cepstrum parameters. As a parameter selection method, sequential feature selection method was used. In the experiment to distinguish the four emotions of normal, joy, sadness and angry, fifteen of the total 56 pitch parameters were selected and showed the best recognition performance when fused with cepstrum and delta cepstrum coefficients. This is a 48.9% reduction in the error of emotion recognition system using only pitch parameters.

Speech Emotion Recognition Using 2D-CNN with Mel-Frequency Cepstrum Coefficients

  • Eom, Youngsik;Bang, Junseong
    • Journal of information and communication convergence engineering
    • /
    • 제19권3호
    • /
    • pp.148-154
    • /
    • 2021
  • With the advent of context-aware computing, many attempts were made to understand emotions. Among these various attempts, Speech Emotion Recognition (SER) is a method of recognizing the speaker's emotions through speech information. The SER is successful in selecting distinctive 'features' and 'classifying' them in an appropriate way. In this paper, the performances of SER using neural network models (e.g., fully connected network (FCN), convolutional neural network (CNN)) with Mel-Frequency Cepstral Coefficients (MFCC) are examined in terms of the accuracy and distribution of emotion recognition. For Ryerson Audio-Visual Database of Emotional Speech and Song (RAVDESS) dataset, by tuning model parameters, a two-dimensional Convolutional Neural Network (2D-CNN) model with MFCC showed the best performance with an average accuracy of 88.54% for 5 emotions, anger, happiness, calm, fear, and sadness, of men and women. In addition, by examining the distribution of emotion recognition accuracies for neural network models, the 2D-CNN with MFCC can expect an overall accuracy of 75% or more.

잡음 환경에서의 유도 전동기 고장 검출 및 분류를 위한 강인한 특징 벡터 추출에 관한 연구 (A Study on Robust Feature Vector Extraction for Fault Detection and Classification of Induction Motor in Noise Circumstance)

  • 황철희;강명수;김종면
    • 한국컴퓨터정보학회논문지
    • /
    • 제16권12호
    • /
    • pp.187-196
    • /
    • 2011
  • 유도 전동기는 항공 산업, 자동차 산업 등의 산업 현장에서 중요한 역할을 하고 있으며, 이러한 유도 전동기의 고장으로 인한 피해를 최소화하기 위해 유도 전동기의 고장 검출 및 분류 시스템의 개발이 중요한 문제로 대두되고 있다. 이에 본 논문에서는 정상 및 각종 비정상 상태의 유도 전동기 진동 신호에 대해 부분 자기 상관(partial autocorrelation, PARCOR) 계수, 로그 스펙트럼 파워(log spectrum powers, LSP), 캡스트럼 계수의 평균값(cepstrum coefficients mean, CCM), 멜 주파수 캡스트럼 계수(mel-frequency cepstrum coefficient, MFCC)의 네 가지 특징 벡터를 신경 회로망의 입력으로 사용하여 유도 전동기의 고장을 검출하고 분류하였다. 고장 분류를 위한 최적의 특징 벡터를 찾기 위해 추출하는 특징의 수를 2에서 20으로 바꾸어 가며 분류 성능을 평가한 결과 CCM을 제외한 나머지의 경우 5~6의 특징만으로 분류 정확도가 거의 100%에 가까운 결과를 보였다. 또한 본 논문에서는 실제 산업 현장에서 진동 신호 취득 시 포함될 수 있는 잡음을 고려하여 취득한 신호에 백색 잡음(white Gaussian noise)을 인위적으로 추가하여 실험한 결과 LSP, PARCOR, MFCC 순으로 잡음 환경에 강인한 특징 벡터임을 확인할 수 있었다.

말초 청각 계통 모델을 이용한 한국어 모음 인식 (Korean Vowel Recognition using Peripheral Auditory Model)

  • 윤태성;백승화;박상희
    • 대한의용생체공학회:의공학회지
    • /
    • 제9권1호
    • /
    • pp.1-10
    • /
    • 1988
  • In this study, the recognition experiments for Korean vowel are performed using peripheral auditory model. In addition, for the purpose of objective comparison, the recognition experiments are performed by extracting LPC cepstrum coefficients for the same speech data. The results are as follows. 1) The time and the frequency responses of the auditory model show that important features of input signal are involved in the responses of inner ear and auditory nerve. 2) The recognition results for Korean vowel show that the recognition rate by auditory model output is higher than the recognition rate by LPC cepstrum coefficients. 3) The adaptation phenomenon of auditory nerve provides useful characteristics for the discrimination of vowel signal.

  • PDF

EMG Pattern Recognition based on Evidence Accumulation for Prosthesis Control

  • Lee, Seok-Pil;Park, Sand-Hui
    • Journal of Electrical Engineering and information Science
    • /
    • 제2권6호
    • /
    • pp.20-27
    • /
    • 1997
  • We present a method of electromyographic(EMG) pattern recognition to identify motion commands for the control of a prosthetic arm by evidence accumulation with multiple parameters. Integral absolute value, variance, autoregressive(AR) model coefficients, linear cepstrum coefficients, and adaptive cepstrum vector are extracted as feature parameters from several time segments of the EMG signals. Pattern recognition is carried out through the evidence accumulation procedure using the distances measured with reference parameters. A fuzzy mapping function is designed to transform the distances for the application of the evidence accumulation method. Results are presented to support the feasibility of the suggested approach for EMG pattern recognition.

  • PDF

Cepstrum 계수와 Frequency Sensitive Competitive Learning 신경회로망을 이용한 한국어 인식. (Korean Digit Recognition Using Cepstrum coefficients and Frequency Sensitive Competitive Learning)

  • 이수혁;조성원;최경삼
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1994년도 추계학술대회 논문집 학회본부
    • /
    • pp.329-331
    • /
    • 1994
  • In this paper, we present a speaker-dependent Korean Isolated digit recognition system. At the preprocessing step, LPC cepstral coefficients are extracted from speech signal, and are used as the input of a Frequency Sensitive Competitive Learning(FSCL) neural network. We carried out the postprocessing based on the winning-neuron histogram. Experimetal results Indicate the possibility of commercial auto-dial telephones.

  • PDF