본 실험은 우리나라 재래계의 육종 기초 자료를 얻고자 염색체의 형태와 G-, C-banding pattern을 조사하여 보았다. 시료는 성장중인 초기배아를 이용하였고 염색체 분양분석은 현재 Ohio 대학에서 시행하고 있는 방법을 다소 수정하여 행하였다. 실험결과 macrochromosome의 armratio와 centromeric index 그리고 relative length에서 다소 개량종과 차가 있으나 designation에는 차이가 없었다. Densitometric recording에 나타난 graph의 정점은 G-banding에서 1, 2, 3, 4, Z, 그리고 5번의 각 염색체에서 각각 21, 14, 12, 8, 11 그리고 4 개였고, C-banding에서는 各各 16, 13, 9, 9, 9,그리고 4 개였다. 이러한 banding pattern은 분염분석 방법에 따라 더 많이 발현시킬 수 있으리라 생각하며, banding pattern 에 의해서 genetic marker를 시사하기 위해서는 더 많은 연구가 이루어져야 할 것이다.
Karyotype analysis was carried out on blood samples of 30 water buffaloes belonging to different breed groups (i.e. Philippine Carabao (PC), Indian Murrah (IM), Bulgarian Murrah (BM), "$F_1$ 50% IM-50% PC", "$F_1$ 50% BM-50% PC" and "75% IM-25% PC"), using the modified Leucocyte Culture Technique. The modal chromosome numbers of the PC, "$F_1$ 50% IM-50% PC", "$F_1$ 50% BM-50% PC", IM, BM and "75% IM-25% PC" were 2n=48, 49, 49, 50, 50 and 50, respectively. The water buffalo chromosomes are mostly acrocentric (79.67%) and the remainder submetacentric (20.33%). Results of the ordinary least square analysis showed significant breed effects (p<0.01) on other karyotypic characteristics (i.e. relative length, arm ratio and centromeric index). Significant correlation between karyotypic characteristics and some animal performance traits were also found. The significant correlation values imply that karyotypic characteristics can be used as important criteria to select potentially productive young water buffaloes. In the future, more production and reproduction traits from non-institutional herds should be included in the analysis to reveal meaningful correlations with various karyotypic characteristics.
본 연구는 단관백백레그혼순계 염색체의 형태적 특징과 크기를 명확히 구명하기 위하여 중심입지수, 등 완비 및 상대적 길이를 측정하여 이용하고 이들의 염색체 수를 밝혔다. 시험재료로서는 서울대학교 부속목장에서 사육중인 단관백색레그혼순계 암컷 20수와 수컷 5수를 공시하고 이들을 수정시켜 50개의 수정란에 대하여 염색체 분석을 하였다. 분석방법으로서는 중기상의 포착을 위하여 colchicine을 이용하고, hypotonic, fixation, air-drying 처리를 하여 나타난 초기 metaphase상으로서 핵형분석하였다. 시험 결과 분석된 각 염색체의 형태적 특징은 다음과 같다. 1. 1,2심 염색체 : meta 및 submetacentric으로서 이들 둘 간에는 크기에 따라 명확히 구분된다. 2. 3,4심 염색체 : 길이는 서로 비슷하나, 4심 염색체에서는 짧은 단완이 나타나고, 3심은 acrocentric 형태이다. 3. 5심 염색체 : 성염색체(Z)로서 metacentric 형태이다. W 염색체 역시 metacentric 이지만 7-8심 염색체 크기 정도이다. 4. 6심 염색체 : 3심과 같이 acro 형체이나 3심 염색체 크기의 반정도이다. 5. 7,8심 염색체 : 6심 크기의 반정도로서 길이는 서로 비슷하나 7심은 짧은 단완을 가지고, 8심은 acrocentric 염색체이다. 6. 9심 염색체 : 7심과 8심의 크기와 비슷하나 metacentric 양상이다. 7. 나머지 30쌍의 소형염색체 : 점의 형태로서 대부분 acrocentric 형태이다. 이 밖에도 염색체의 수에 있어서 관찰된 sample의 58%가 78개로 나타났고, 나머지는 72-77개로 나타남에 따라 이의 염색체 수는 최소 78개로 사료된다.
In this paper, we proposed the multi-step multi-layer artificial neural network(MMANN) to classify the chromosome, Which is used as a chromosome pattern classifier after learning. We extracted three chromosome morphological feature parameters such as centromeric index, relative length ratio, and relative area ratio by means of preprocessing method from ten chromosome images. The feature parameters of five chromosome images were used to learn neural network and the rest of them were used to classify the chromosome images. The experiment results show that the chromosome classification error is reduced much more, comparing with less feature parameters than that of the other researchers.
일본산메추리(Coturnix coturnix japonica)의 핵형연구를 위하여 정소조직 및 백혈구, 초기태아조직들로서 염색체 분석을 수행하였다. 이들 염색체의 수는 정상 이배체(2n)가 78개로 나타나고, 계2 감수분열 중기상태의 정모세포의 관찰에서 반수체(n)가 39개로 나타났다. 한편 8개의 대형염색체 및 성 염상체에 대한 형태적 분석은 동원체지수 및 상대적 길이비로서 측정하였다. 이용된 여러 조직간의 염색체의 형태적 차이는 거의 없는 것으로 나타났으나 4번 염색체템서 p-alm의 존재유무에 따라 상당한 변이를 나타내었다.
The human chromosome analysis is widely used to diagnose genetic disease and various congenital anomalies. Many researches on automated chromosome karyotype analysis have been carried out, some of which produced commercial systems. However, there still remains much room for improving the accuracy of chromosome classification. In this paper, We proposed an optimal pattern classifier by neural network to improve the accuracy of chromosome classification. The proposed pattern classifier was built up of two-step multi-layer neural network(TMANN). We reconstructed chromosome image to improve the chromosome classification accuracy and extracted four morphological features parameters such as centromeric index (C.I.), relative length ratio(R.L.), relative area ratio(R.A.) and chromosome length(C.L.). These Parameters employed as input in neural network by preprocessing twenty human chromosome images. The experiment results shown that the chromosome classification error was reduced much more than that of the other classification methods.
Researches on chromosome are very significant in cytogenetics since a gene of the chromosome controls revelation of the inheritance plasma The human chromosome analysis is widely used to diagnose genetic disease and various congenital anomalies. Many researches on automated chromosome karyotype analysis has been carried out, some of which produced commercial systems. However, there still remains much room for improving the accuracy of chromosome classification. In this paper, we propose an algorithm for reconstruction of the chromosDme image to improve the chromosome classification accuracy. Morphological feature parameters are extracted from the reconstructed chromosome images. The reconstruction method from chromosome image is the 32 direction line algorithm. We extract three morphological feature parameters, centromeric index(C.I.), relative length ratio(R.L.), and relative area ratio(R.A.), by preprocessing ten human chromosDme images. The experimental results show that proposed algorithm is better than that of other researchers'comparing by feature parameter errors.
In this paper, We propose an algorithm for reconstitution of chromosome images to extract its morphological feature parameters. It is reconstituted from 460 chromosome images using the 32 direction line algorithm. We extract three morphological feature parameters such as centromeric index, relative length ratio, and relative area ratio. The experiment results show that our method is batter than that of other researchers comparing with the error of feature parameters.
Chromosomes, as the genetic vehicles, provide the basic material for a large proportion of genetic investigations. The human chromosome analysis is widely used to diagnose genetic disease and various congenital anomalies. Many researches on automated chromosome karyotype analysis has been carried out, some of which produced commercial systems. However, there still remains much room for improving the accuracy of chromosome classification. In this paper, we propose an optimal pattern classifier by neural network to improve the accuracy of chromosome classification. The proposed pattern classifier was built up of two-step multi-layer neural network(TMANN). We are employed three morphological feature parameters ; centromeric index(C.I.), relative length ratio(R.L.), and relative area ratio(R.A.), as input in neural network by preprocessing twenty human chromosome images. The results of our experiments show that our TMANN classifier is much more useful in neural network learning and successful in chromosome classification than the other classification methods.
많은 연구자들이 자동 염색체 핵형 분류와 해석을 연구하고 있다. 현미경상의 이미지를 개개의 염색체로 자동 분류하기 위해서는 이미지 전처리 핵형 분류기 구현 등의 세부 절차가 필요하다. 이미지 전처리에서는 개개의 염색체 분리, 잡음 제거, 특징 파라미터 추출을 진행한다. 추출된 형태학적 특징 파라미터는 동원체 지수, 상대 길이비, 상대 면적비이다. 본 논문에서는 인간 염색체 핵형 분류를 위하여 퍼지 분류기가 사용되어졌다. 추출된 형태학적 특징 파라미터가 퍼지 분류기의 입력 파라미터로 사용되었다. 우리는 개개의 염색체 그룹에 대한 최적 퍼지 분류기를 위하여 멤버쉽 함수를 선택하는 것을 연구하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.