• Title/Summary/Keyword: centroid method

Search Result 266, Processing Time 0.03 seconds

Localization Method in Wireless Sensor Networks using Fuzzy Modeling and Genetic Algorithm (퍼지 모델링과 유전자 알고리즘을 이용한 무선 센서 네트워크에서 위치추정)

  • Yun, Suk-Hyun;Lee, Jae-Hun;Chung, Woo-Yong;Kim, Eun-Tai
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.4
    • /
    • pp.530-536
    • /
    • 2008
  • Localization is one of the fundamental problems in wireless sensor networks (WSNs) that forms the basis for many location-aware applications. Localization in WSNs is to determine the position of node based on the known positions of several nodes. Most of previous localization method use triangulation or multilateration based on the angle of arrival (AOA) or distance measurements. In this paper, we propose an enhanced centroid localization method based on edge weights of adjacent nodes using fuzzy modeling and genetic algorithm when node connectivities are known. The simulation results shows that our proposed centroid method is more accurate than the simple centroid method using connectivity only.

Research on the Analysis of Maritime Traffic Pattern using Centroid Method (중심점 기법을 이용한 통항패턴 분석에 관한 연구)

  • Kim, Hye-Jin;Oh, Jae-Yong
    • Journal of Navigation and Port Research
    • /
    • v.42 no.6
    • /
    • pp.453-458
    • /
    • 2018
  • The analysis of maritime traffic refers to the processes that are used to analyze the environmental characteristics of the target area and, based on this analysis, predict the traffic pattern of the vessels. In recent years, maritime traffic analysis has become significant with increase maritime traffic volume and expansion of VTS coverage area. In addition, maritime traffic analysis is also applicable in the safety assessment of port facilities and the VTS (Vessel Traffic Service). In this paper, we propose a method to analyze the vessels' traffic pattern by using the heat map and the centroid method. This method is efficient for the analysis of the vessel trajectory data where spatial characteristics change with time. In the experiments, the traffic density and centroid by time have were analyzed. Trajectory data collected at Mokpo harbor was adopted. Finally, we reviewed the experimental results to verify the feasibility of the proposed method as a maritime traffic analysis method.

Partial Discharge Distribution Analysis on Interlace Defects of Cable Joint using K-means Clustering (K-means 클러스터링을 이용한 케이블 접속재 계면결함의 부분방전 분포 해석)

  • Cho, Kyung-Soon;Hong, Jin-Woong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.11
    • /
    • pp.959-964
    • /
    • 2007
  • To investigate the influence of partial discharge(PD) distribution characteristics due to various defects on the power cable joints interface, we used the K-means clustering method. As the result of PD number(n) distribution analyzing on $\Phi-n$ graph, the phase angle($\Phi$) of cluster centroid shifted to $0^{\circ}\;and\;180^{\circ}$ increasing with applying voltage. It was confirmed that the PD quantify(q) and euclidean distance of centroid were increased with applying voltage from the centroid distribution analyzing of $\Phi-q$ plane. The dispersion degree was increased with calculated standard deviation of the $\Phi-q$ cluster centroid. The PD number and mean value on $\Phi-q$ graph were some different by electric field concentration with defect types.

Adaptive Moment-of-Fluid Method:a New Volume-Tracking Method for Multiphase Flow Computation

  • Ahn, Hyung-Taek;Shashkov, Mikhail
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03a
    • /
    • pp.334-336
    • /
    • 2008
  • A novel adaptive mesh refinement (AMR) strategy based on the Moment-of-Fluid (MOF) method for volume-tracking dynamic interface computation is presented. The Moment-of-Fluid method is a new interface reconstruction and volume advection method using volume fraction as well as material centroid. The mesh refinement is performed based on the error indicator, the deviation of the actual centroid obtained by interface reconstruction from the reference centroid given by moment advection process. Using the AMR-MOF method, the accuracy of volume-tracking computation with evolving interfaces is improved significantly compared to other published results.

  • PDF

Adaptive Moment-of-Fluid Method: a New Volume-Tracking Method for Multiphase Flow Computation

  • Ahn, Hyung-Taek;Shashkov, Mikhail
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.334-336
    • /
    • 2008
  • A novel adaptive mesh refinement (AMR) strategy based on the Moment-of-Fluid (MOF) method for volume-tracking dynamic interface computation is presented. The Moment-of-Fluid method is a new interface reconstruction and volume advection method using volume fraction as well as material centroid. The mesh refinement is performed based on the error indicator, the deviation of the actual centroid obtained by interface reconstruction from the reference centroid given by moment advection process. Using the AMR-MOF method, the accuracy of volume-tracking computation with evolving interfaces is improved significantly compared to other published results.

  • PDF

Efficient Preprocessing Method for Binary Centroid Tracker in Cluttered Image Sequences (복잡한 배경영상에서 효과적인 전처리 방법을 이용한 표적 중심 추적기)

  • Cho, Jae-Soo
    • Journal of Advanced Navigation Technology
    • /
    • v.10 no.1
    • /
    • pp.48-56
    • /
    • 2006
  • This paper proposes an efficient preprocessing technique for a binary centroid tracker in correlated image sequences. It is known that the following factors determine the performance of the binary centroid target tracker: (1) an efficient real-time preprocessing technique, (2) an exact target segmentation from cluttered background images and (3) an intelligent tracking window sizing, and etc. The proposed centroid tracker consists of an adaptive segmentation method based on novel distance features and an efficient real-time preprocessing technique in order to enhance the distinction between the objects of interest and their local background. Various tracking experiments using synthetic images as well as real Forward-Looking InfraRed (FLIR) images are performed to show the usefulness of the proposed methods.

  • PDF

An Efficient Face Recognition by Using Centroid Shift and Mutual Information Estimation (중심이동과 상호정보 추정에 의한 효과적인 얼굴인식)

  • Cho, Yong-Hyun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.4
    • /
    • pp.511-518
    • /
    • 2007
  • This paper presents an efficient face recognition method by using both centroid shift and mutual information estimation of images. The centroid shift is to move an image to center coordinate calculated by first moment, which is applied to improve the recognition performance by excluding the needless backgrounds in face image. The mutual information which is a measurements of correlations, is applied to efficiently measure the similarity between images. Adaptive partition mutual information(AP-MI) estimation is especially applied to find an accurate dependence information by equally partitioning the samples of input image for calculating the probability density function(PDF). The proposed method has been applied to the problem for recognizing the 48 face images(12 persons * 4 scenes) of 64*64 pixels. The experimental results show that the proposed method has a superior recognition performances(speed, rate) than a conventional method without centroid shift. The proposed method has also robust performance to changes of facial expression, position, and angle, etc. respectively.

Indoor Positioning Technique applying new RSSI Correction method optimized by Genetic Algorithm

  • Do, Van An;Hong, Ic-Pyo
    • Journal of IKEEE
    • /
    • v.26 no.2
    • /
    • pp.186-195
    • /
    • 2022
  • In this paper, we propose a new algorithm to improve the accuracy of indoor positioning techniques using Wi-Fi access points as beacon nodes. The proposed algorithm is based on the Weighted Centroid algorithm, a popular method widely used for indoor positioning, however, it improves some disadvantages of the Weighted Centroid method and also for other kinds of indoor positioning methods, by using the received signal strength correction method and genetic algorithm to prevent the signal strength fluctuation phenomenon, which is caused by the complex propagation environment. To validate the performance of the proposed algorithm, we conducted experiments in a complex indoor environment, and collect a list of Wi-Fi signal strength data from several access points around the standing user location. By utilizing this kind of algorithm, we can obtain a high accuracy positioning system, which can be used in any building environment with an available Wi-Fi access point setup as a beacon node.

A Study on the Comparison of 2-D Circular Object Tracking Algorithm Using Vision System (비젼 시스템을 이용한 2-D 원형 물체 추적 알고리즘의 비교에 관한 연구)

  • Han, Kyu-Bum;Kim, Jung-Hoon;Baek, Yoon-Su
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.7
    • /
    • pp.125-131
    • /
    • 1999
  • In this paper, the algorithms which can track the two dimensional moving circular object using simple vision system are described. In order to track the moving object, the process of finding the object feature points - such as centroid of the object, corner points, area - is indispensable. With the assumption of two-dimensional circular moving object, the centroid of the circular object is computed from three points on the object circumference. Different kinds of algorithms for computing three edge points - simple x directional detection method, stick method. T-shape method are suggested. Through the computer simulation and experiments, three algorithms are compared from the viewpoint of detection accuracy and computational time efficiency.

  • PDF

Performance Comparison of Naive Bayesian Learning and Centroid-Based Classification for e-Mail Classification (전자메일 분류를 위한 나이브 베이지안 학습과 중심점 기반 분류의 성능 비교)

  • Kim, Kuk-Pyo;Kwon, Young-S.
    • IE interfaces
    • /
    • v.18 no.1
    • /
    • pp.10-21
    • /
    • 2005
  • With the increasing proliferation of World Wide Web, electronic mail systems have become very widely used communication tools. Researches on e-mail classification have been very important in that e-mail classification system is a major engine for e-mail response management systems which mine unstructured e-mail messages and automatically categorize them. In this research we compare the performance of Naive Bayesian learning and Centroid-Based Classification using the different data set of an on-line shopping mall and a credit card company. We analyze which method performs better under which conditions. We compared classification accuracy of them which depends on structure and size of train set and increasing numbers of class. The experimental results indicate that Naive Bayesian learning performs better, while Centroid-Based Classification is more robust in terms of classification accuracy.