• Title/Summary/Keyword: centrifuge tests

Search Result 223, Processing Time 0.024 seconds

Comparison and Evaluation of Two-part Wedge Analysis for Reinforced Slopes with Centrifuge Test (보강사면(補强斜面)에 대한 Centrifuge Test와 Two-part Wedge 해석(解析)의 비교평가(比較評價))

  • Seo, In-Shik;Lee, Chin;Kim, Byung-Tak
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.2 no.2
    • /
    • pp.35-39
    • /
    • 1999
  • Results of two-part wedge analysis and centrifuge test executed by Zornberg et al. were compared for geotextile-reinforced slope stability. For two-part wedge analysis results of two cases, a frictional case considering internal friction of soil as interwedge friction and a nonfrictional case not considering, were also compared and evaluated. The analysis was based on limit equilibrium and two-part wedge was divided into slices as many as the number of geotextiles to obtain a maximum tension distribution mobilized in reinforcements. A significant observation was that the distribution was a triangular shape with maximum tension of geotextile at a transit point of interwedge. The number of geotextiles and failure surface of frictional case were reasonable and more comparable to results of the centrifuge tests than those of nonfrictional case. Therefore it can be said that two-part wedge analysis is recommendable for design analysis of reinforced slopes if an interwedge angle is regarded to be an angle of internal friction in soil.

  • PDF

Seismic Responses of Multi-DOF Structures with Shallow Foundation Using Centrifuge Test (원심모형실험을 활용한 얕은 기초가 있는 다자유도 구조물의 지진응답)

  • Kim, Dong Kwan;Kim, Ho Soo;Kim, Jin Woo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.26 no.3
    • /
    • pp.117-125
    • /
    • 2022
  • In this study, centrifuge model tests were performed to evaluate the seismic response of multi-DOF structures with shallow foundations. Also, elastic time history analysis on the fixed-base model was performed and compared with the experimental results. As a result of the centrifuge model test, earthquake amplification at the fundamental vibration frequency of the soil (= 2.44 Hz) affected the third vibration mode frequency (= 2.50 Hz) of the long-period structure and the first vibration mode (= 2.27 Hz) of the short-period structure. The shallow foundation lengthened the periods of the structures by 14-20% compared to the fixed base condition. The response spectrum of acceleration measured at the shallow foundation was smaller than that of free-field motion due to the foundation damping effect. The ultimate moment capacity of the soil-foundation system limited the dynamic responses of the multi-DOF structures. Therefore, the considerations on period lengthening, foundation damping, and ultimate moment capacity of the soil-foundation system might improve the seismic design of the multi-DOF building structures.

Cost-effective method for reducing local failure of floodwalls verified by centrifuge tests

  • Chung R. Song;Binyam Bekele;Brian D. Sawyer;Ahmed Al-Ostaz;Alexander Cheng;Vanadit-Ellis Wipawi
    • Geomechanics and Engineering
    • /
    • v.33 no.2
    • /
    • pp.155-165
    • /
    • 2023
  • Hurricane Katrina swept New Orleans, Louisiana, USA, in 2005, causing more than 1,000 fatalities and severe damage to the flood protection system. Recovery activities are complete, however, clarifying failure mechanisms and devising resilient and cost-effective retrofitting techniques for the flood protection system are still of utmost importance to enhance the general structural integrity of water retaining structures. This study presents extensive centrifuge test results to find various failure mechanisms and effective retrofitting techniques for a levee system. The result confirmed the rotational failure and translational failure mechanisms for the London Ave. Canal levee and 17th St. Canal levee, respectively. In addition, it found that the floodwalls with fresh waterstop in their joints perform better than those with old/weathered waterstop by decreasing pore water pressure build-up in the levee. Structural caps placed on the top of the joints between I-walls could also prevent local failure by spreading the load to surrounding walls. At the same time, the self-sealing bentonite-sand mixture installed along the riverside of floodwalls could mitigate the failure of floodwalls by blocking the infiltration of seepage water into the gap formed between levee soils and floodwalls.

Centrifuge Model Test on the Bearing Capacity and Failure Mechanism of Composit Ground Improved with Slag Compaction Piles (슬래그 다짐말뚝으로 개량된 복합지반의 지지력 및 파괴메카니즘에 관한 원심모형실험)

  • Yoo Nam-Jae;Park Byung-Soo;Jeong Gil-Soo;Koh Kyung-Hwan;Kim Ji-Sung
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.1
    • /
    • pp.59-67
    • /
    • 2005
  • This paper presents experimental and numerical research results of centrifuge model tests performed to investigate the geotechnical engineering behavior of slag compaction pile as a substitute of sand compaction pile. For centrifuge model tests, bearing capacity of composit soil improved with slag compaction piles, stress concentrations in-between pile and soft clay, settlement characteristics, and failure modes were investigated with slags differing in their relative density. A slag was found to be a good substitute for a sand since the slag compaction pile model showed a greater yield stress intensity up to $30\%$ than the sand compaction pile model under the identical testing conditions. Stress concentration ratio tended to increase with the relative density of slag pile and the clear shear lines in the piles were observed at the depth of $2D{\sim}2.5D$ (D=dia. of model pile) from the top of the piles after loading tests. Numerical analysis with a software of CRISP, implemented with the modified Cam-clay model, was carried out to simulate the results of centrifuge model test. Test results about characteristics of load-settlement curves and stress concentration ratio are in relatively good agreements with numerical estimations.

A Study on the Lateral Behavior of Steel Pipe Piles in Centrifugal Test (원심모형실험에 의한 강관말뚝의 수평거동연구)

  • Kim, Yeong-Su;Seo, In-Sik;Kim, Byeong-Tak
    • Geotechnical Engineering
    • /
    • v.12 no.6
    • /
    • pp.5-20
    • /
    • 1996
  • This paper presents results from a series of model tests on laterally loaded single piles with both free-head and free-tip conditions. Model tests, using a centrifuge apparatus (middie size, Mark II in 7.1.7.) were carried out in sand based on the variation of different gravity acceleration and flexural stiffness of the pile and relative density of the soil. The aims of this study are to estimate the effect of gravity acceleratioil, flexordis stiffness, and relative density on the behavior of the pile embedded in Toyoura sand and to evaluate the applicability of a family of the p-y curves which was presented by several reseachers(Mur chison & O'Neill, neese et n., scott, Det worske veritas, nondner). The Program is deviloped by using p-y curves, and it can be used for the calculation of the displacement distri bution, bending moment distribution, and soil reaction distribution. By comparing meas ured responses with predicted one it is shown that the results of the p-y curve equation presented by Murchison & O'Neill and Kondner agreed with the general trend observed by the centrifuge tests much better than the numerical solutions predicted by the other sets of p -y curves.

  • PDF

Characteristics of Ground Movement in High Filling Abutment on Soft Ground (연약지반상 고성토 교대구간의 지반거동 특성)

  • Heo, Yol;Song, Seokcheol;Ahn, Kwangkuk;Oh, Seungtak;Seo, Sanggu
    • Journal of the Korean GEO-environmental Society
    • /
    • v.9 no.7
    • /
    • pp.13-23
    • /
    • 2008
  • In this study, the centrifuge tests and numerical analyses were performed to investigate the lateral flow behavior and stability of abutment when high filling was applied on the soft ground improved by SCP. The centrifuge model tests and numerical analyses were fulfilled in the case of the back of abutment filled by EPS (case 1) and soil (case 2), and the potentiometer was installed on the abutment and fill to measure the vertical and horizontal displacement at the top of abutment. As a result of the centrifugal tests, the horizontal displacement of abutment in the case 1 was 1.4cm that is almost coincide with the results of numerical and satisfy the allowable standard. On the other hand, the horizontal displacement of abutment in the case 2 was 12 cm that is 18% greater than that of numerical analysis and exceed the allowable standard. As a result of analysis, the maximum horizontal displacement of pile was 1.26 cm in case 1 that satisfies the criterion of allowable horizontal displacement (1.5 cm). In contrast, the maximum horizontal displacement of pile was 1.005 m in case 2 that greatly exceeds the allowable horizontal displacement.

  • PDF

Behavior of Buried Geo-structures due to Increase of Excess Pore Water Pressure Ratio During Earthquakes (지진발생시 과잉간극수압비의 증가에 따른 지중 매설구조물의 거동)

  • Kang, Gi-Chun
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.12
    • /
    • pp.27-37
    • /
    • 2011
  • Uplift phenomenon occurs when the apparent unit weight of buried geo-structures becomes smaller than that of the liquefied backfill due to the increase of an excess pore water pressure during strong earthquakes. In order to explain the relationship between the uplift displacement of the buried geo-structures and the increase of the excess pore water pressure ratio in backfill, dynamic centrifuge model tests are conducted. In the present study, primary and secondary factors against uplift behavior of the buried geo-structures are considered in the dynamic centrifuge model tests. Among these factors, the most important factors affecting the increase in the excess pore water pressure ratio were the ground water depth, the relative density of backfill, and the amplitude of the input acceleration, which were also largely affect the uplift amount of the buried geo-structures.

Comparison of Lateral Pile Behavior under Static and Dynamic Loading by Centrifuge Tests (원심모형 실험을 이용한 지반-말뚝 상호작용의 정적 및 동적 거동 평가)

  • Yoo, Min-Taek;Kwon, Sun-Yong
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.7
    • /
    • pp.51-58
    • /
    • 2018
  • In this study a series of centrifuge tests were carried out in dry sand to analyze the comparison of lateral pile behavior for static loading and dynamic loading condition. In case of static loading condition, the lateral displacement was applied up to 50% of pile diameter by deflection control method. And the input sine wave of 0.1 g~0.4 g amplitude and 1 Hz frequency was applied at the base of the soil box using shaking table for dynamic loading condition. From comparison of experimental static p-y curve obtained from static loading tests with API p-y curves, API p-y curves can predict well within 20% error the ultimate subgrade reaction force of static loading condition. The ultimate subgrade reaction force of experimental dynamic p-y curve is 5 times larger than that of API p-y curves and experimental static p-y curves. Therefore, pseudo-static analysis applied to existing p-y curve for seismic design could greatly underestimate the soil resistance at non-linear domain and cause overly conservative design.

Effect of Skirt Length on Behavior of Suction Foundations for Offshore Wind Turbines Installed in Dense Sand Subjected to Earthquake Loadings (조밀한 모래지반에 설치된 해상풍력 석션기초의 스커트길이에 따른 지진하중시 거동특성)

  • Choo, Yun Wook;Olalo, Leonardo;Bae, Kyung-Tae
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.28 no.4
    • /
    • pp.202-211
    • /
    • 2016
  • This study aims to analyze seismic responses of suction foundations for offshore wind turbine. For this purpose, dynamic centrifuge model tests were carried out. The skirt length of the suction foundation is a critical element for bearing mechanism against environmental loads. Thus, dynamic centrifuge model tests were performed and analyzed for three suction foundation models with the ratios of skirt length to suction foundation diameter of 0.5, 0.75, and 1 installed in dense sand. As results, the acceleration amplification at the suction foundation, residual settlement, and residual tilting angle were compared.

The Behavior of Piled Bridge Abutments Subjected to Lateral Soil Movements - A Study on the Centrifuge Model Tests - (측방유동을 받는 교대말뚝기초의 거동분석 (I) - 원심모형실험 연구 -)

  • 서정주;서동희;정상섬;김유석
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.1
    • /
    • pp.5-19
    • /
    • 2003
  • A series of centrifuge model tests were conducted to investigate the behavior of piled bridge abutments subjected to lateral soil movements induced by approach embankments. The effect of clay layer depth and the rate of embankment construction on piled bridge abutments are the main focus of this study. Tests were performed for two loading types: (1) incremental loading applied in six lifts to the final embankment height; (2) instant loading corresponding to the final embankment height applied in one lift quickly. A variety of instrumentations such as LVDTs, strain gauges, earth pressure transducers, and pore pressure transducers are installed in designed positions in order to clarify the soil-pile interaction and the short- and long-term behavior for piled bridge abutments adjacent to surcharge loads. Based on the results of a series of centrifuge model tests, the distribution of lateral flow induced by staged embankment construction has trapezoidal distribution. The maximum lateral soil pressure is about 0.75$\gamma$H at surcharge loading stage, and about 0.35 $\gamma$H at over 80% consolidated stage.