• 제목/요약/키워드: centrifuge modelling

검색결과 28건 처리시간 0.029초

단일말뚝 형태의 모형시험을 통한 SCP와 GCP의 극한지지력 비교 (Comparison of Bearing Capacity between SCP and GCP by Unit Cell Model Tests)

  • 김병일;이승원;김범상;유완규
    • 한국지반공학회논문집
    • /
    • 제20권8호
    • /
    • pp.41-48
    • /
    • 2004
  • 이 연구에서는 아직 국내에서는 시공실적이 없는 쇄석다짐말뚝(Gravel Compaction pile)공법의 적용성을 판단하기 위하여 SCP와 GCP의 모형토조시험을 수행하였다. 즉, 원통형 압밀상자(지름 20cm, 높이 40cm)에 치환율 30, 40, 50, 60, 70%로 달리 조성하여 원심력 압밀시험기를 이용하여 압밀시킨 후, 재하시험을 통하여 두 공법의 지지력 특성을 비교 검토하였다. 또한 모형시험을 통해 얻어진 극한지지력을 기존에 제안된 SCP 및 GCP 시공지반의 극한지지력 산정식을 이용한 계산값과 비교하였다. 모형시험 결과 GCP 시공지반이 SCP 시공지반에 비해 지지력 측면에서 더 우수한 것으로 나타났다.

Centrifuge modelling of rock-socketed drilled shafts under uplift load

  • Park, Sunji;Kim, Jae-Hyun;Kim, Seok-Jung;Park, Jae-Hyun;Kwak, Ki-Seok;Kim, Dong-Soo
    • Geomechanics and Engineering
    • /
    • 제24권5호
    • /
    • pp.431-441
    • /
    • 2021
  • Rock-socketed drilled shafts are widely used to transfer the heavy loads from the superstructure especially in mountainous area. Extensive research has been done on the behavior of rock-socketed drilled shafts under compressive load. However, little attention has been paid to uplift behavior of drilled shaft in rock, which govern the overall behavior of the foundation system. In this paper, a series of centrifuge tests have been performed to investigate the uplift response of rock-socketed drilled shafts. The pull-out tests of drilled shafts installed in layered rocks having various strengths were conducted. The load-displacement response, axial load distributions in the shaft and the unit skin friction distribution under pull-out loads were investigated. The effects of the strength of rock socket on the initial stiffness, ultimate capacity and mobilization of friction of the foundation, were also examined. The results indicated that characteristics of rock-socket has a significant influence on the uplift behavior of drilled shaft. Most of the applied uplift load were carried by socketed rock when the drilled shaft was installed in the sand over rock layer, whereas substantial load was carried by both upper and lower rock layers when the drilled shaft was completely socketed into layered rock. The pattern of mobilized shaft friction and point where the maximum unit shaft friction occurred were also found to be affected by the socket condition surrounding the drilled shaft.

수치해석에 의한 복개터널 라이닝의 변위거동 (Displacement Behaviour of Cut-and-Cover Tunnel Lining by Numerical Analysis)

  • 이명욱;박병수;전용배;유남재
    • 산업기술연구
    • /
    • 제24권A호
    • /
    • pp.227-238
    • /
    • 2004
  • This paper is results of experimental and nunerical works on the behavior of the cut-and-cover tunnel. Centrifuge model tests were performed to simulate the behavior of the cut-and-cover tunnels having cross sections of national road and subway tunnels. Model experiments were carried out with changing the cut slope and the slope of filling ground surface. Displacements of tunnel lining resulted from artificially accelerated gravitational force up to 40g of covered material used in model tests, were measured during centrifuge model tests. In model tests, Jumunjin Standard Sand with the relative density of 80 % and the zinc plates were used for the covered material and the flexible tunnel lining, respectively. Basic soil property tests were performed to obtain it's the property of Jumumjin Standard Sand. Shear strength parameters of Jumunjin Standard Sand were obtained by performing the triaxial compression tests. Direct shear tests were also carried out to find the mechanical properties of the interface between the lining and the covered material. Numerical analysis with the commercially available program of FLAC were performed to compare with results of centrifuge model experiment In numerical modelling. Mohr-Coulomb elasto-plastic constitutive model was used to simulaye the behavoor of Jumunjin Standard Sand and the interface element between the lining and the covered material was implemented to simulate the interaction between them. Compared results between model tests and numerical estimation with respect to displacement of the lining showed in good agreements.

  • PDF

준설매립지반의 압밀침하에 대한 쌍곡선 침하예측기법의 적용성 연구 (A Study on the Applicability of Hyperbolic Settlement Prediction Method to Consolidation Settlement in the Dredged and Reclaimed Ground)

  • 유남재;전상현;전진용
    • 산업기술연구
    • /
    • 제28권A호
    • /
    • pp.11-17
    • /
    • 2008
  • Applicability of hyperbolic settlement prediction method to consolidation settlement in the dredged and reclaimed ground was assessed by analyzing results of centrifuge tests modelling self-weight consolidation of soft marine clay. From literature review about self-weight consolidation of soft marine clays located in southern coast in Korea, constitutive relationships of void ratio - effective stress - permeability and typical self-weight consolidation curves with time were obtained by analyzing centrifuge model experiments. For the condition of surcharge loading, exact solution of consolidation settlement curve obtained by using Terzaghi's consolidation theory was compared with results predicted by the hyperbolic method. It was found to have its own inherent error to predict final consolidation settlement. From results of analyzing thc self-weight consolidation with time by using this method, it predicted relatively well in error range of 0.04~18% for the case of showing the linearity in the relationship between T vs T/S in the stage of consolidation degree of 60~90 %. However, it overestimated the final settlement with large errors if those relation curves were nonlinear.

  • PDF

Settlement prediction for footings based on stress history from VS measurements

  • Cho, Hyung Ik;Kim, Han Saem;Sun, Chang-Guk;Kim, Dong Soo
    • Geomechanics and Engineering
    • /
    • 제20권5호
    • /
    • pp.371-384
    • /
    • 2020
  • A settlement prediction method based on shear wave velocity measurements and soil nonlinearity was recently developed and verified by means of centrifuge tests. However, the method was only applicable to heavily overconsolidated soil deposits under enlarged yield surfaces. In this study, the settlement evaluation method was refined to consider the stress history of the sublayer, based on an overconsolidation ratio evaluation technique, and thereby incorporate irrecoverable plastic deformation in the settlement calculation. A relationship between the small-strain shear modulus and overconsolidation ratio, which can be determined from laboratory tests, was adopted to describe the stress history of the subsurface. Based on the overconsolidation ratio determined, the value of an empirical coefficient that reflects the effect of plastic deformation over the elastic region is determined by comparing the overconsolidation ratio with the stress increment transmitted by the surface design load. The refined method that incorporate this empirical coefficient was successfully validated by means of centrifuge tests, even under normally consolidated loading conditions.

Centrifuge shaking table tests on a friction pendulum bearing isolated structure with a pile foundation in soft soil

  • Shu-Sheng, Qu;Yu, Chen;Yang, Lv
    • Earthquakes and Structures
    • /
    • 제23권6호
    • /
    • pp.517-526
    • /
    • 2022
  • Previous studies have shown that pile-soil interactions have significant influences on the isolation efficiency of an isolated structure. However, most of the existing tests were carried out using a 1-g shaking table, which cannot reproduce the soil stresses resulting in distortion of the simulated pile-soil interactions. In this study, a centrifuge shaking table modelling of the seismic responses of a friction pendulum bearing isolated structure with a pile foundation under earthquakes were conducted. The pile foundation structure was designed and constructed with a scale factor of 1:100. Two layers of the foundation soil, i.e., the bottom layer was made of plaster and the upper layer was normal soil, were carefully prepared to meet the similitude requirement. Seismic responses, including strains, displacement, acceleration, and soil pressure were collected. The settlement of the soil, sliding of the isolator, dynamic amplification factor and bending moment of the piles were analysed to reveal the influence of the soil structure interaction on the seismic performance of the structure. It is found that the soil rotates significantly under earthquake motions and the peak rotation is about 0.021 degree under 24.0 g motions. The isolator cannot return to the initial position after the tests because of the unrecoverable deformation of the soil and the friction between the curved surface of the slider and the concave plate.

과재하중이 있는 Unpropped Diaphragm Wall의 변위양상에 관한 원심모델링 (Centrifugal Modelling on the Displacement Mode of Unpropped Diaphragm Wall with Surcharge)

  • 허열;이처근;안광국
    • 한국지반공학회논문집
    • /
    • 제20권8호
    • /
    • pp.135-145
    • /
    • 2004
  • 본 연구에서는 화강풍화토 지반상 unpropped diaphragm wall의 거동을 연구하기 위하여 과재하중의 이격거리를 변화시키면서 원심모형실험을 수행하였다. 원심모형실험시 지반굴착은 흙과 동일한 밀도로 혼합된 zinc chloride 용액이 배수되도록 밸브를 조작하여 실시하였으며, 굴착에 따라 발생하는 지반의 변형과 벽체의 변위 및 휨모멘트를 측정하였다. 수치해석은 대부분의 지반공학 문제에 적용할 수 있는 FLAC 프로그램을 이용하였다. 수치해석에서 모형지반은 Mohr-Coulomb 모델, diaphragm wall은 탄성모델을 사용하여 2차원 평면변형률 조건으로 해석을 수행하였다. 모형실험 결과 파괴면의 직선적인 형태로 파괴면내의 배면측 지반은 벽체를 향하여 하향의 변위를 일으키면서 벽체의 회전에 의해 파괴되었으며, 파괴면의 각도는 67∼74$^{\circ}$정도로 이론적인 파괴면의 각도보다 크게 평가되었다. 실험 및 해석 결과 지반의 최대침하량이 발생하는 위치는 잘 일치하였으며, 깊이에 따른 벽체변위는 선형적인 관계를 나타내었다.

원심모형실험을 통한 기울어진 건물의 기울기 교정에 이용되는 Soil Extraction 공법의 모델링 (Modelling of Soil Extraction Technique for Restoration of Building Tilt from Geotechnical Centrifuge Tests)

  • 이철주
    • 한국지반공학회논문집
    • /
    • 제21권2호
    • /
    • pp.121-126
    • /
    • 2005
  • 건축구조물이나 합 등의 구조물이 부등침하의 영향으로 기울어지게 되는 것은 그리 드문 현상이 아니다. 그동안 구조물의 기울기를 감소시키기 위한 다양한 공학적인 해결방안이 시도되어 왔는데, 그 가운데는 soil extraction 공법도 포함되어 없다. 본 논문에서는 최신의 로보트 굴착장비를 이용한 2개의 원심모형실험을 실시하여 soil extraction공법을 이용하여 기울어진 건물의 경사를 감소시키는 데 있어서의 주된 요소에 대한 연구를 실시하였다. 원심모형실험에서는 모형토조가 고속으로 회전하는 가운데 로보트를 이용하여 기울어진 건물의 주변에 구명을 천공하였다. 지반에 구멍을 천공함으로 지중응력의 감소를 유도하여 건물의 기울기를 성공적으로 감소시킬 수 있었다. 원심모형실험을 통해서 분석된 천공의 순서, 지반의 밀도 및 배열 등이 건물의 기울기를 감소시키는 정도에 대하여 심도 있는 연구를 실시하였다.

변위억제형 Sheet pile 설치에 따른 SCP복합지반의 지지력 특성 (Characteristics of Bearing Capacity for SCP Composite Ground reinforced by the Sheet piles Restraining Deformation)

  • 박병수
    • 한국항해항만학회지
    • /
    • 제30권8호
    • /
    • pp.711-719
    • /
    • 2006
  • 본 연구는 변위억제형 Sheet pile 이 설치된 SCP복합지반의 지지력 특성에 대한 연구로서 원심모형실험과 수치해석을 통하여 SCP 복합지반의 하중-침하 관계, 응력분담특성, 최종함수비 등의 변화에 대해 알아보았다. SCP를 기초폭의 2배로 개량한 조건과 Sheet pile를 기초 한쪽 모서리에 설치한 경우, Sheet pile를 기초 양쪽 모서리에 설치한 경우 3가지에 대하여 연직하중재하 실험을 실시하였다. 한편, 원심모형실험 결과를 모사하기 위하여 상용 유한요소 프로그램인 CRISP을 이용하였으며 수치해석시 모래다짐말뚝은 탄소성모델로 점토지반은 한계평형 상태에 기초한 수정 Cam-clay 모델을 사용하였다. 원심모형실험결과 Sheet pile이 기초파괴활동을 억지하여 항복하중강도가 증가하였으며 Sheet pile 설치에 따른 응력분담비는 $2{\sim}4$의 값을 나타내었다. 또한 수치해석 결과 Sheet pile설치에 따라 지반융기량이 $20{\sim}30%$감소하였고 수평변위는 $28{\sim}43%$ 감소효과를 나타내었다.

Incorporating uplift in the analysis of shallowly embedded pipelines

  • Tian, Yinghui;Cassidy, Mark J.
    • Structural Engineering and Mechanics
    • /
    • 제40권1호
    • /
    • pp.29-48
    • /
    • 2011
  • Under large storm loads sections of a long pipeline on the seabed can be uplifted. Numerically this loss of contact is extremely difficult to simulate, but accounting for uplift and any subsequent recontact behaviour is a critical component in pipeline on-bottom stability analysis. A simple method numerically accounting for this uplift and reattachment, while utilising efficient force-resultant models, is provided in this paper. While force-resultant models use a plasticity framework to directly relate the resultant forces on a segment of pipe to the corresponding displacement, their historical development has concentrated on precisely modelling increasing capacity with penetration. In this paper, the emphasis is placed on the description of loss of penetration during uplifting, modelled by 'strain-softening' of the force-resultant yield surface. The proposed method employs uplift and reattachment criteria to determine the pipe uplift and recontact. The pipe node is allowed to become free, and therefore, the resistance to the applied hydrodynamic loads to be redistributed along the pipeline. Without these criteria, a localised failure will be produced and the numerical program will terminate due to singular stiffness matrix. The proposed approach is verified with geotechnical centrifuge results. To further demonstrate the practicability of the proposed method, a computational example of a 1245 m long pipeline subjected to a large storm in conditions typical of offshore North-West Australia is discussed.