• Title/Summary/Keyword: centrifugal impeller

Search Result 401, Processing Time 0.035 seconds

Influence of Large Change of Specific Speed on the Performance of Very Low Specific Speed Centrifugal Pump (비속도의 큰 변화가 극저비속도 원심펌프의 성능에 미치는 영향)

  • Choi, Young-Do;Kagawa, Shusaku;Kurokawa, Junichi
    • The KSFM Journal of Fluid Machinery
    • /
    • v.9 no.1 s.34
    • /
    • pp.40-46
    • /
    • 2006
  • Efficiency of a centrifugal pump is known to drop rapidly with a decrease of specific speed $n_s$. However, below $n_s=60\;[min^{-1},\;m^3/min,\;m]$, the pump characteristics are not yet clear. Therefore, present study is aimed to investigate the influence of large change of specific speed on the performance of a very low specific speed centrifugal pump. Moreover, influence of impeller configuration on the performance of very low specific speed pump is investigated. The results show that very low specific speed can be accomplished by reducing volute throat sectional area using circular spacer. Influence of the spacer's location and configuration in the discharge passage on the pump performance is very small. Best efficiency of very low specific speed centrifugal pump decreases proportionally to the specific speed but the best efficiency decreases on a large scale in the range of $n_s<40$. Influence of impeller configuration on the pump performance and radial thrust of centrifugal pump are considerably small in the range of extremely low specific speed $(n_s=25)$.

Study on the Performance of a Centrifugal Compressor Using Fluid-Structure Interaction Method (유체-구조 연성해석을 이용한 원심압축기 운전익단간극과 성능 예측)

  • Lee, Horim;Kim, Changhee;Yang, Jangsik;Son, Changmin;Hwang, Yoonjei;Jeong, Jinhee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.6
    • /
    • pp.357-363
    • /
    • 2016
  • In this study, we perform a series of aero-thermo-mechanical analyses to predict the running-tip clearance and the effects of impeller deformation on the performance using a centrifugal compressor. During operation, the impeller deformation due to a combination of the centrifugal force, aerodynamic pressure and the thermal load results in a non-uniform tip clearance profile. For the prediction, we employ the one-way fluid-structure interaction (FSI) method using CFX 14.5 and ANSYS. The predicted running tip clearance shows a non-uniform profile over the entire flow passage. In particular, a significant reduction of the tip clearance height occurred at the leading and trailing edges of the impeller. Because of the reduction of the tip clearance, the tip leakage flow decreased by 19.4%. In addition, the polytrophic efficiency under operating conditions increased by 0.72%. These findings confirm that the prediction of the running tip clearance and its impact on compressor performance is an important area that requires further investigation.

Flow Instability Assessment Occurring in Low Flow Rate Region According to the Change of a Centrifugal Compressor Impeller Shape (원심압축기 임펠러의 형상 변화에 따른 저유량 영역에서 발생하는 불안정 유동 평가)

  • Jo, Seong Hwi;Kim, Hong Jip;Lee, Myong Hee
    • The KSFM Journal of Fluid Machinery
    • /
    • v.19 no.2
    • /
    • pp.21-26
    • /
    • 2016
  • The objective of present study is to assess the performance of the first stage compressor in a total 3-stage 5000 HP-level turbo compressor. CFD commercial code, CFX has been used to predict three-dimensional flow characteristics inside of the impeller. Shear Stress Transport (SST) model has been used to simulate turbulent flows through Reynolds-averaged Navier-Stokes (RANS) equations. Grid dependency has been also checked to get optimal grid distribution. Numerical results have been compared with the experimental test results to elucidate performance characteristics of the present compressor. In addition, flow characteristics of the impeller only have been studied for various blade configurations. Angular offset in leading edge of the blade has been selected for the optimal blade design. Performance characteristics in region of low mass flow rate and high pressure ratio between the impeller entrance and exit have been investigated for the selection of optimal blade design. Also, flow instability such as stall phenomena has been studied and anti-stall characteristics have been checked for various blade configurations in the operational window.

A Study on the Identification of Aeroacoustic Noise and Noise Reduction for a Vacuum Cleaner (청소기의 공력소음 특성 파악 및 저소음화에 관한 연구)

  • 전완호;백승조;김창준;허남건
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.633-638
    • /
    • 2002
  • The vacuum cleaner that has no dust bag generates very high level annoying noise. The dominant noise source is the 2$\^$nd/ BPF tone of the rotating impeller. In order to reduce the noise, we identify the acoustic characteristics and reduce the noise of the vacuum cleaner and centrifugal fan. The resonance phenomenon is observed in blade passages and we found out that the resonance frequency is very close to the 2$\^$nd/ BPF. In order to reduce this high-level peak noise, new impeller is designed in this paper. The trailing edge of new impeller is inclined and this makes the flow interactions between the rotating impeller and the stationary diffuser vane occurs with some phase shift. The performance of new impeller is similar to the old one but the overall SPL is reduced about 3.6dBA. The SPL of BPF is reduced about 6dBA and 2$\^$nd/ BPF is reduced about 20dBA. The vacuum cleaner, which uses newly developed centrifugal fan, generate more comfortable noise than the old model and the strong tonal sound was dramatically reduced.

  • PDF

Cavitation in a Shaft-less Double Suction Centrifugal Miniature Pump

  • Zhuang, Baotang;Luo, Xianwu;Zhu, Lei;Wang, Xin;Xu, Hongyuan
    • International Journal of Fluid Machinery and Systems
    • /
    • v.4 no.1
    • /
    • pp.191-198
    • /
    • 2011
  • Based on the consideration that the cavitation would affect the operation stability of miniature pumps, the 3-D turbulent cavitating flow in a test pump was simulated by using a mixed cavitation model and k-${\omega}$ SST turbulence model. In order to investigate the influence of inlet geometry parameters on the cavitation performance of the miniature pump, two more impellers are designed for comparison. Based on the results, the following conclusions are drawn: 1) Cavitation performance of the double suction shaft-less miniature pump having different impeller is equivalent to the centrifugal pump having ordinary size, though the flow passage at impeller inlet is small; 2) The miniature pump having radial impeller can produce much higher pump head, but lower cavitation performance than that having the impeller based on the conventional design method; 3) It is believed that by applying the double suction design, the miniature pump achieved relatively uniform flow pattern upstream the impeller inlet, which is favorable for improving cavitation performance.

Effect of Blade Leading Edge Sweep on the Performance of a High Pressure Centrifugal Compressor Impeller

  • Wang, Hongliang;Xi, Guang
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.823-827
    • /
    • 2008
  • The effects of blade leading edge sweep on both the aerodynamic performance and the structure stress of a high pressure centrifugal compressor impeller are numerically investigated. Changes in the flow structure occur as a result of the effect of leading edge sweep on the loading distribution in the tip region. The flow separation is avoided by introducing a sweep of the main blade leading edge and the strength of shock is reduced at the same time. Backswept of the leading edge is found to be beneficial to the impeller performance improving. On the other hand, the structural analysis indicated that high rotating speed of the impeller will cause substantial high bending stresses and radial deflections of the blade. Studies have shown that it is possible to control the stress distribution along the tip and root of the blade by slight adjustments to the sweep angle of the leading edge. These adjustments may be used to design the impeller with lower blade root stress distribution without aerodynamics performance penalty.

  • PDF

Flow Analysis for Performance Characteristics with Closed Type Impeller Shapes of a Centrifugal Compressor (원심압축기 밀폐형 임펠러 형상에 따른 성능특성 파악을 위한 유동해석)

  • Cho, Jongjae;Yoon, YongSang;Cho, MyungHwan;Kang, SukChul
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.21 no.1
    • /
    • pp.26-35
    • /
    • 2017
  • The high-cycle fatigue cracking and the resonance generated in operation of a centrifugal compressor are main cause of the impeller damage. In order to prevent the damage, the impeller is designed or modified to have sufficient strength to withstand the operating condition. The damage prevent design will lead to a change of the flow condition and the performance characteristics of the compressor. In this study, the computational analysis were performed to identify the flow and the performance characteristics. The cases are a scalloped and a increased the blade thickness models with a closed type impeller. As the analysis results, the value of head coefficient and total to total efficiency for the increased the blade thickness model was decreased by each 0.5% and 0.1% than the values of the baseline model. Each value for the scalloped model was increased by 0.4% and was decreased by 1.6%.

An Alysis of Flow and Noise Source for Vacuum Cleaner Centrigugal Fan (진공청소기 원심홴의 유동과 소음원 해석)

  • 전완호;유기완;이덕주;이승갑
    • Journal of KSNVE
    • /
    • v.7 no.1
    • /
    • pp.99-106
    • /
    • 1997
  • Centrigugal fans are widely used due to their ability to achieve relatively high pressure ratios in a short axial distance compared to axial fans. Because of their widespread use, the noise generated by these machines causes one of serious problems. In general, centrigugal fan noise is often dominated by tones at BPF(blade passage frequency) and its higher harmonics. This is a consequence of the strong interaction between the periodic flow discharged radially from the impeller and the stator blades or the cutoff. But in vacuum cleaner fan the noise is dominated by not only the discrete tones of BPF but also broadband frequencies. In this study we investigate the mechanism of broadband noise and predict for the unsteady flow field and the acoustic pressure field associated with the centrifugal fan. DVM(discrete vortex method) is used to calculates the flow field and the Lowson's method is used to predict the acoustic pressures. From the results we find that the broadband noise of a circular casing centrifugal fan is due to the unsteady force fluctuation around the impeller blades related to the vortex shedding. The unsteady forces associated with the shed vortices at impeller and related to the interactions to the diffuser and the exit.

  • PDF

Numerical Analysis Techniques and Flow Characteristics of Two-Stage Centrifugal Compressor for R134a Turbo-Chiller (R134a 터보 냉동기용 2단 원심 압축기의 수치해석 기법과 내부유동 특성)

  • Park, Han-Young;Oh, Hyun-Taek;Shin, You-Hwan;Lee, Yoon-Pyo;Kim, Kwang-Ho;Chung, Jin-Taek
    • The KSFM Journal of Fluid Machinery
    • /
    • v.10 no.4
    • /
    • pp.29-38
    • /
    • 2007
  • In this study, flow structure in a two-stage centrifugal compressor for a turbo-chiller with the refrigerant, R134a, was numerically investigated at the design point of the compressor using a commercial code. Flow characteristics in the passages of impeller, diffuser and return channel were analyzed in detail including velocity vector, secondary flow, Mach number and pressure contours in blade spanwise and meridional plane for each stage. The estimation on the one-dimensional output from the preliminary design and three-dimensional shape of the impeller blade and the meridional shape of the return channel were performed through the flow analysis, while some numerical schemes and techniques including Multiple Frames of Reference technique, real gas property data and inlet boundary condition changes, which were used in CFD, were compared with their features. The results will be used as reference data for a new design of 3-D impeller shape to improve R134a compressor performance.

AERODYNAMIC DESIGN AND NUMERICAL ANALYSIS OF PROPANE REFRIGERANT CENTRIFUGAL COMPRESSOR FOR LNG PLANT (LNG 플랜트용 프로판 냉매 압축기 공력설계 및 수치해석)

  • Park, J.H.;Lee, W.S.;Kang, K.J.;Shin, Y.H.;Lee, Y.P.;Kim, K.H.;Chung, J.T.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.167-173
    • /
    • 2010
  • In this study, flow structure in a three-stage centrifugal compressor for LNG Plant with the refrigerant, Propane, was numerically investigated at the design point of the compressor using a commercial code. Flow characteristics in the passages of impeller and vaneless diffuser were analyzed in detail including velocity vector, Mach number and pressure contours in blade spanwise and meridional plane for each stage. The estimation on the one-dimensional output from the preliminary design and three-dimensional shape of the impeller blade was performed through the flow analysis. The verification for designed compressor was carried out from three-dimensional Navier-Stokes analysis. The results will be used as reference data for a new design of 3-D impeller shape to improve propane refrigerant compressor performance.

  • PDF