• Title/Summary/Keyword: centrifugal fracture

Search Result 23, Processing Time 0.029 seconds

Fracture Characteristics of Carbonized Silicon Grinding Wheels (탄화규소 연삭숫돌의 파괴특성)

  • Oh, Dong-Seuk;Lee, Byong-Gon
    • Journal of the Korean Society of Safety
    • /
    • v.17 no.4
    • /
    • pp.45-51
    • /
    • 2002
  • In this study, the fracture characteristics of carbonized silicon grinding wheels were examined with tensile, compression, impact and bending test. The experiment was performed for the various grinding wheels with grain size #46, #80, and grade H, L, P, and one vitrified bond and one structure No.7. Also the centrifugal fracture rpm of carbonized silicon grinding wheels were measured and compared with the calculated values for the various wheel diameters and thicknesses. The results showed that the fracture tensile strength was $1.5~2.0Kg_f/mm^2$, and it was increased by decreasing grain size and increasing grade. The fracture compression loads were $1,600~3,000Kg_f$, and the inner stress was higher than outer's. And the absorption energy of impact test was 3.3~4.7 J, and it was increased by decreasing grain size but it was not effected by grade. The fracture bending stress was $0.1~0.2Kg_f/mm^2$, and it was increased by decreasing grain size and increasing grade. The centrifugal fracture rpm of carbonized silicon grinding wheel was about 8,500~12,000 and agreed well with the calculated value, and it was increased by decreasing diameter. However, it was almost constant for the reduction of wheel thickness.

Forensic Engineering Study on the Explosion Accident Investigation of the Centrifugal Casting Machine Using ADINA FSI (ADINA FSI를 활용한 원심주조기 폭발사고 원인 규명에 관한 법공학적 연구)

  • Kim, Eui-Soo;Kim, Jong-Hyuk;Kim, Moo-Gon
    • Journal of the Korean Society of Safety
    • /
    • v.26 no.4
    • /
    • pp.27-33
    • /
    • 2011
  • Forensic Engineering is the area covering the investigation of products, structures that fail to perform or do not function as intended, causing personal injury or damage to property. To investigate explosion accident of the centrifugal casting machine in terms of the forensic engineering, in this paper, the computing simulation using ADINA FSI has performed to investigate that the effect of the Check-Pin fracture by the flow phenomena and molten metal weight and the mechanical properties test of the accident Check-Pin has performed using the instrumented indentation technique. Through these studies, the safety accident that may occur in centrifugal casting machine can be minimized by performing specialized and systematic investigation of the accident cause in terms of the forensic engineering.

Stress and Fracture Analyses of Nuclear Power Plant LP Turbine Rotor Discs

  • Lee, Choon-Yeol;Kwon, Jae-Do;Chai, Young S.;Jang, Ki-Sang
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.2
    • /
    • pp.207-214
    • /
    • 2000
  • Fracture phenomenon has been reported on blades, rotors, connections and rotor discs of LP turbines of nuclear power plants, which is caused by fatigue, stress corrosion and erosion. In this study, as a tool of reliability evaluation, a number of stress and fracture analyses were performed on the defected area under various operating conditions using the finite element method. Possible defects on key-way and rotor disc were assumed to be two-dimensional cracks and centrifugal force, temperature distribution and shrink-fit effect were included as external loads. From stress analysis results, stress intensity factors were obtained and these values can be utilized to evaluate reliability and predict remaining lifetime of the turbine discs.

  • PDF

A Study on the Failure Mechanism of Turbine Blade using X-Ray Diffraction and FEM (X선 회절과 유한요소법을 이용한 터빈 블레이드의 파괴기구에 관한 연구)

  • Kim, Sung-Woong;Hong, Soon-Hyeok;Jeon, Hyoung-Yong;Cho, Seok-Swoo;Joo, Won-Sik
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.258-265
    • /
    • 2001
  • Turbine blade is subject to force of three type ; torsional force by torsion-mount, centrifugal force by rotation of rotor and cyclic bending force by steam pressure. Cyclic bending force of them is main factor on fatigue fracture. In the X-ray diffraction method, the change in the values related to plastic deformation and residual stress near the fracture surface mat be determined, and information of internal structure of material can be obtained. Therefore, to find a fracture mechanism of torsion-mounted blade in nuclear plant, based on the information from the fracture surface obtained by fatigue test, the correlation of X-ray parameter and fracture mechanics parameter was determined, and then the load applied to actual broken turbine blade parts was predicted. Failure analysis is performed by finite element method and Goodman diagram on torsion-mounted blade.

  • PDF

A comprehensive study of the effects of long-term thermal aging on the fracture resistance of cast austenitic stainless steels

  • Collins, David A.;Carter, Emily L.;Lach, Timothy G.;Byun, Thak Sang
    • Nuclear Engineering and Technology
    • /
    • v.54 no.2
    • /
    • pp.709-731
    • /
    • 2022
  • Loss of fracture resistance due to thermal aging degradation is a potential limiting factor affecting the long-term (80+ year) viability of nuclear reactors. To evaluate the effects of decades of aging in a practical time frame, accelerated aging must be employed prior to mechanical characterization. In this study, a variety of chemically and microstructurally diverse austenitic stainless steels were aged between 0 and 30,000 h at 290-400 ℃ to simulate 0-80+ years of operation. Over 600 static fracture tests were carried out between room temperature and 400 ℃. The results presented include selected J-R curves of each material as well as K0.2mm fracture toughness values mapped against aging condition and ferrite content in order to display any trends related to those variables. Results regarding differences in processing, optimal ferrite content under light aging, and the relationship between test temperature and Mo content were observed. Overall, it was found that both the ferrite volume fraction and molybdenum content had significant effects on thermal degradation susceptibility. It was determined that materials with >25 vol% ferrite are unlikely to be viable for 80 years, particularly if they have high Mo contents (>2 wt%), while materials less than 15 vol% ferrite are viable regardless of Mo content.

Experimental Study on the Blade Excitation Frequency for the Natural Frequence of Centrifugal Pump Piping Systems (원심펌프 배관계 진동에 영향을 주는 블레이드 가진주파수의 실험적 고찰)

  • 김윤제;신호길
    • Journal of Energy Engineering
    • /
    • v.10 no.4
    • /
    • pp.335-341
    • /
    • 2001
  • Pressure pulsations generated by the blade-tongue interaction induce vibration of the piping systems and the structure connected to pumps, resulting in the severe noise and fatigue fracture. Experiments were made on the natural frequencies of liquid columns in piping systems with a single suction, single stage, centrifugal volute pump. Experimental results show that the natural frequencies of the liquid columns in the pump piping systems depend on the dimensions of the pipes and the impeller shapes, and are not affected substantially by the rate of discharge and the rotating speed of the pump.

  • PDF

A Study on the Prediction of Failure Stress for Table Liner under Fatigue Load (피로하중을 받는 테이블 라이너의 파손응력예측에 관한 연구)

  • 이동우;주원식
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.8
    • /
    • pp.97-105
    • /
    • 2004
  • The vertical roller mill is the important machine grinding and mixing various crude materials in the manufacturing process of portland cement. Table liner is one of grinding elements of vertical roller mill and is subjected to the cyclic bending stress by rollers and the centrifugal force by rotation of table. It demands $4{\times}10^7$ expense of life but has $4{\times}10^6~-8{\times}10^6$ cycle. It fractures at the edge of grinding path of outside roller The repair expense fur it amounts to 30% of total maintenance of vertical roller mill. Therefore, this study shows the fracture mechanism of table liner of vertical roller mill using HDM and fatigue analysis

A Study on on Failure Analysis of Table Liner for Roller Mill (롤러 분쇄기용 테이블 라이너의 파손 해석에 관한 연구)

  • Lee, Dong-Woo;Hong, Soon-Hyeok;Lee, Kyoung-Young;Cho, Seok-Swoo;Joo, Won-Sik
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.163-169
    • /
    • 2003
  • The vertical roller mill is the important machine grinding and mixing various crude materials in the manufacturing process of portland cement. Table liner is one of grinding elements of vertical roller mill and is subjected to the cyclic bending stress by rollers load and the centrifugal force by rotation of table. It demands $4{\times}10^7$ cycle but has $4{\times}10^6{\sim}8{\times}10^6$ cycle. It fractures at the edge of grinding path of outside roller. The repair expense for it amounts to 30% of total maintenance of vertical roller mill. Therefore, this study shows the fracture mechanism of table liner for vertical roller mill using HDM and fatigue analysis

  • PDF

A Study on Failure Analysis of Turbine Blade using AFM and FEM (AFM과 유한요소법을 이용한 터빈 블레이드의 파손해석에 관한 연구)

  • 최우성;이동우;홍순혁;조석수;주원식
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.489-493
    • /
    • 2000
  • Turbine blade has trouble of cracking at root region. Fracture surface of blade root is surveyed by SEM and AFM to clear relation between fracture mechanical parameter and surface parameter (striation width and surface roughness). Service stress is predicted by maximum height roughness $R_{max}$, on fractured surface and stress analysis on turbine blade. It is to thought that turbine blade is fractured by abnormal condition such as incorrect fittings between pin and pin hole but isn't fractured by normal service conditions such as steam pressure, centrifugal force and torsional force.

  • PDF

A Study on Failure Analysis of Low Pressure Turbine Blade Subject to Fatigue Load (피로하중을 받은 저압 터빈 블레이드의 파손해석에 관한 연구)

  • 홍순혁;이동우;조석수;주원식
    • Journal of Welding and Joining
    • /
    • v.19 no.3
    • /
    • pp.298-304
    • /
    • 2001
  • Turbine blade is subject to force of three types ; the torsional force by torsional mount, the centrifugal force by the rotation of rotor and the cyclic bending force by steam pressure. The cyclic bending force was a main factor on fatigue strength. SEM fractography in root of turbine blade showed micro-clack width was not dependent on stress intensity factor range. Especially, fatigue did not exist on SEM photograph in root of turbine blade. To clear out the fracture mechanism of turbine blade, nanofractography was needed on 3-dimensional crack initiation and crack growth with high magnification. Fatigue striation partially existed on AFM photograph in root of turbine blade. Therefore, to find a fracture mechanism of the torsion-mounted blade in nuclear power plant, the relation between stress intensity factor range and surface roughness measured by AFM was estimated, and then the load amplitude ΔP applied to turbine blade was predicted exactly by root mean square roughness.

  • PDF