• Title/Summary/Keyword: centrifugal Compressor

Search Result 243, Processing Time 0.026 seconds

Study of the Flow in Centrifugal Compressor

  • Xu, Cheng;Amano, Ryoichi Samuel
    • International Journal of Fluid Machinery and Systems
    • /
    • v.3 no.3
    • /
    • pp.260-270
    • /
    • 2010
  • Reducing the losses of the tip clearance flow is one of the keys in an unshrouded centrifugal compressor design and development because tip clearances are large in relation to the span of the blades and also centrifugal compressors produce a sufficiently large pressure rise in single stage. This problem is more acute for a low flow high-pressure ratio impeller design. The large tip clearance would cause flow separations, and as a result it would drop both the efficiency and surge margin. Thus a design of a high efficiency and wide operation range low flow coefficient centrifugal compressor is a great challenge. This paper describes a recent development of high efficiency and wide surge margin low flow coefficient centrifugal compressor. A viscous turbomachinery optimal design method developed by the authors for axial flow machine was further extended and used in the centrifugal compressor design. The compressor has three main parts: impeller, a low solidity diffuser and volute. The tip clearance is under a special consideration in this design to allow impeller insensitiveness to the clearance. A patented three-dimensional low solidity diffuser design method is used and applied to this design. The compressor test results demonstrated to be successful to extend the low solidity diffusers to high-pressure ratio compressor. The compressor stage performance showed the total to static efficiency of the compressor being about 85% and stability range over 35%. The test results are in good agreement with the design.

Development of the Centrifugal Compressor for a R134a Turbo-Chiller Part 1 : Design of the Centrifugal Compressor (R134a용 터보냉동기의 원심압축기 개발 Part 1 : 원심압축기 설계)

  • Lee, Yongduck;Jeong, Jinhee;Lee, Hyeonkoo;Yoon, Pil-Hyun;Kim, Kilyoung
    • The KSFM Journal of Fluid Machinery
    • /
    • v.3 no.4 s.9
    • /
    • pp.44-51
    • /
    • 2000
  • The present study has been conducted to design the high efficiency centrifugal compressor for a R134a turbo-chiller. The centrifugal compressor consists of an impeller with splitters, two vaneless diffusers, a low-solidity vaned diffuser and a volute. A cycle analysis program for a turbo-chiller was developed to obtain compressor design parameters and requirements. We have designed the high efficiency centrifugal compressor by applying the repeated design procedure including a meanline design, a 3D geometry generation and fluid dynamic loading calculations.

  • PDF

Numerical Investigation of Ring Groove Effect in a Centrifugal Compressor (원심압축기의 링 그루브 효과에 관한 수치해석적 연구)

  • Park, Chi-Yong;Choi, Young-Seok;Lee, Kyoung-Yong;Yoon, Joon-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.14 no.2
    • /
    • pp.11-16
    • /
    • 2011
  • This paper presents a numerical study of casing treatments on a centrifugal compressor stage to improve stability and the surge margin. High efficiency, a high pressure ratio, and a wide operating range are required for a high performance centrifugal compressor. In the present study, a ring groove arrangement was applied to the transonic centrifugal compressor. According to the numerical analysis using a commercial code ANSYS-CFX, the unstable phenomena limiting the range of the centrifugal compressors were compared with and without a ring groove. Although the ring groove decreased the efficiency, but increased the operating range by suppressing a flow separation at the leading-edge of the impeller especially near shroud part. Newly designed ring groove arrangement improved the compressor performance and increased the operating range of the compressor.

Effects of Asymmetric Tip Clearance on Centrifugal Compressor Flow (비대칭 팁간극이 원심압축기의 유동에 미치는 영향)

  • Yoon, Yong-Sang;Song, Seung-Jin
    • 유체기계공업학회:학술대회논문집
    • /
    • 2005.12a
    • /
    • pp.533-541
    • /
    • 2005
  • Compared to axial compressors, an analytical model capable of analyzing the flow in centrifugal compressor lacks because of the difficulty in governing equations for radial duct. Therefore, this paper presents a new model to predict flow field in a centrifugal compressor with a sinusoidal asymmetric tip clearance. To predict the 2 dimensional flow in the inlet and exit of the centrifugal compressor, the two flow fields are connected with compressor characteristic based on Moore-Greitzer model. Contrary to axial compressors, the nonuniformity of impeller exit pressure in centrifugal compressor decreases as flow coefficient decreases. In addition, that is sensitive to the slope of pressure rise by eccentricity. The maximum velocity exists right before the maximum tip clearance.

  • PDF

A Study on Aerodynamic Design and Flow Characteristics of a Centrifugal Compressor for SOFC-Gas Turbine Hybrid System (SOFC-GT 혼합시스템용 원심압축기 공력설계 및 유동특성 연구)

  • Choi, Jae-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.2
    • /
    • pp.284-291
    • /
    • 2008
  • This study presents an aerodynamic design and numerical analysis of a centrifugal compressor in gas turbines for SOFC-gas turbine hybrid system application. Total-to-total pressure ratio of the compressor is 3.6:1 that could be used widely for small and large SOFC-gas turbine systems. The compressor consists of a centrifugal impeller and a wedge diffuser. Conceptual design and aerodynamic design with mean line analysis and quasi-3D analysis are performed, and aerodynamic parameters as well as design variables are discussed from the design results. A numerical analysis based on the Reynolds-averaged Navier-Stokes equation was performed for the flow analysis of the compressor. The results show that the centrifugal compressor designed meets the design target, and the aerodynamic parameters and results of the compressor can be used for the aerodynamic design of centrifugal compressors and the feasibility study of SOFC-gas turbine system design.

Surrogate Modeling for Optimization of a Centrifugal Compressor Impeller

  • Kim, Jin-Hyuk;Choi, Jae-Ho;Kim, Kwang-Yong
    • International Journal of Fluid Machinery and Systems
    • /
    • v.3 no.1
    • /
    • pp.29-38
    • /
    • 2010
  • This paper presents a procedure for the design optimization of a centrifugal compressor. The centrifugal compressor consists of a centrifugal impeller, vaneless diffuser and volute. And, optimization techniques based on the radial basis neural network method are used to optimize the impeller of a centrifugal compressor. The Latin-hypercube sampling of design-of-experiments is used to generate the thirty design points within design spaces. Three-dimensional Reynolds-averaged Navier-Stokes equations with the shear stress transport turbulence model are discretized by using finite volume approximations and solved on hexahedral grids to evaluate the objective function of the total-to-total pressure ratio. Four variables defining the impeller hub and shroud contours are selected as design variables in this optimization. The results of optimization show that the total-to-total pressure ratio of the optimized shape at the design flow coefficient is enhanced by 2.46% and the total-to-total pressure ratios at the off-design points are also improved significantly by the design optimization.

Performance Test for a Centrifugal Air Compressor (원심형 공기압축기 성능시험)

  • 신유환;안이기;김광호;손병진
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.8
    • /
    • pp.1964-1971
    • /
    • 1995
  • In the present study, the performance characteristics of a centrifugal air compressor were investigated experimentally. The PC controlled performance test facility for a centrifugal air compressor driven by an electric motor with a gear box to achieve higher compressor rotating speed was set up in the present study. The performance test for a turbocharger compressor of a diesel engine was conducted, and in a case of 34,800 rpm, pressure ratio 1.18, flow rate 0.09kg/s, compressor efficiency 61% were investigated. Adiabatic power for a tested compressor showed maximum value at mass flow ratio 0.8. The value of mass flow ratio of maximum efficiency was about 0.37, it was independent of compressor rotating speed.

Thermodynamic and Aerodynamic Meanline Analysis of Wet Compression in a Centrifugal Compressor

  • Kang, Jeong-Seek;Cha, Bong-Jun;Yang, Soo-Seok
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.9
    • /
    • pp.1475-1482
    • /
    • 2006
  • Wet compression means the injection of water droplets into the compressor of gas turbines. This method decreases the compression work and increases the turbine output by decreasing the compressor exit temperature through the evaporation of water droplets inside the compressor. Researches on wet compression, up to now, have been focused on the thermodynamic analysis of wet compression where the decrease in exit flow temperature and compression work is demonstrated. This paper provides thermodynamic and aerodynamic analysis on wet compression in a centrifugal compressor for a microturbine. The meanline dry compression performance analysis of centrifugal compressor is coupled with the thermodynamic equation of wet compression to get the meanline performance of wet compression. The most influencing parameter in the analysis is the evaporative rate of water droplets. It is found that the impeller exit flow temperature and compression work decreases as the evaporative rate increases. And the exit flow angle decreases as the evaporative rate increases.

Design and Performance Test of 1300RT Centrifugal Compressor for a HFC-134a Turbo-Chiller (HFC-134a용 1300RT급 원심압축기의 설계 및 성능시험)

  • Ko, Kyung-Tae;Choi, Young-Min;Shin, Jeong-Kwan;Kim, Kyung-Hun
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.672-677
    • /
    • 2001
  • This study has been conducted to design the high efficiency centrifugal compressor for a HFC-134a. The 2-stage centrifugal compressor consists of inlet guide vanes, two impellers with splitters, a deswirler, a vaneless diffuser and a volute casing. We have designed the high efficiency centrifugal compressor by applying the repeated design procedure including a meanline design, a 3D geometry generation of 1st and 2nd impellers etc. Also, a fluid dynamic calculation of impellers and deswirler have been conducting using a commercial code STAR-CD.

  • PDF

A Design Study of Aerodynamic Noise Reduction in Centrifugal Compressor Part I : Performance Analysis and Noise Prediction (원심압축기의 공력소음 저감에 관한 설계연구 Part I : 성능해석 및 소음예측)

  • Sun, Hyosung;Lee, Soogab
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.9 s.90
    • /
    • pp.785-791
    • /
    • 2004
  • The objective of this research is to suggest anoise prediction method for a centrifugal compressor. It is focused on the Blade Passing Frequency component which is regarded as the main part of the rotating impeller noise. Navier-Stokes solver is used to simulate the flow-field of the centrifugal compressor, and the time-dependent pressure data are calculated to perform the near-field noise prediction by using Ffowcs Williams - Hawkings formulation. Indirect Boundary Element Method is applied to consider the noise propagation effect. Pressure fluctuations of the inlet and the outlet in the centrifugal compressor impeller are presented and the sound pressure level prediction results are compared with the experimental data.