• 제목/요약/키워드: central neural pathway

검색결과 17건 처리시간 0.023초

경부 경막외 신경차단을 이용한 2주간 계속된 딸꾹질의 치료 경험 -증례보고- (Cervical Epidural Block Can Relieve Persistent Hiccups -Case report-)

  • 이경진;박원선;전태완;김찬;남용택
    • The Korean Journal of Pain
    • /
    • 제8권1호
    • /
    • pp.131-134
    • /
    • 1995
  • Hiccup is characterized by a myoclonus in the diaphragm, resulting in a sudden inspiration associated with an audible closure of the glottis. The reflex arc in hiccups comprises three pars: an afferent, a central and an efferent part. The afferent portion of the neural pathway of hiccup formation is composed of the vagus nerve, the phrenic nerve, and the sympathetic chain arising from T6 to T12. The hiccup center is localised in the brain stem and the efferent limb comprises phrenic pathways. All stimuli affecting the above mentioned reflex arc may produce hiccups. The pathogenesis of persistent hiccups is not known. Hiccup can present a symptom of a subphrenic abscess or gastric distention, and metabolic alterations may also cause hiccups. Numerous treatment modalities have been tried but with questionable success. We describe a patient whose persistant hiccups was treated successfully by a cervical epidural block.

  • PDF

편마비 아동의 재활프로그램에 대한 양측성 전이 패러다임의 적용가능성 (Applicability of bilateral transfer paradigm to the rehabilitation programs for children with hemiplegic cerebral palsy)

  • 김미현;박상범
    • The Journal of Korean Physical Therapy
    • /
    • 제12권1호
    • /
    • pp.163-172
    • /
    • 2000
  • The purpose of this study was to provide experimental evidence and theoretical background for the applicability of bilateral transfer paradigm to the rehabilitation programs for children with hemiplegic cerebral palsy. Children with hemiplegia, which means unilateral motor disabilities, display abnormal motor and postural patterns of the affected side due to hemiparesis, spasticity, and sensory disorders, resulting in a decreased motor abilities of the affected side compared to unaffected side. Accordingly, they tend to rely on the unaffected limb for everyday activities, which further deteriorates the functions of the affected side by causing associated reaction, abnormal postural patterns, and hypertonus. Rehabilitation programs developed for children with hemiplegic cerebral palsy include neurodevelopmental treatment, application of cast or splint to unaffected limb, neuromuscular electrical stimulation, and task oriented model. These programs, however, have several drawbacks, such as discontinuity in treatment effect and psychological hatred to the force use of the affected side. In order to solve these problems and enhance the efficiency of the rehabilitation programs, it is required to maximize the use of the affected side without hatred. Characteristics of the control system, such as temporal coupling and spatial assimilation between limbs and neural crosstalk at different levels of central motor pathway, suggest that the bilateral transfer paradigm may enhance the efficiency of the rehabilitation programs for children with hemiplegic cerebral palsy.

  • PDF

전침자극(電針刺戟)에 의한 흰쥐 중추신경계(中樞神經系)내 대사활성(代謝活性) 변화(變化)의 영상화(映像化) 연구(硏究) (2-DG Autoradiographic Imaging of Brain Activity Patterns by Electroacupuncture Stimulation in Awake Rats)

  • 손영주;원란;정혁상;김용석;박영배;손낙원
    • Journal of Acupuncture Research
    • /
    • 제18권3호
    • /
    • pp.56-68
    • /
    • 2001
  • Objective : Functional brain mapping study on acupuncture stimulation using the [14C]2-deoxyglucose([14C]2-DG) autoradiography provides quantitative data and visualized pathway in central nervous system(CNS). We aimed to investigate the neural pathway and spatial distribution of metabolic activity elicited in CNS on electroacupuncture stimulation using [14C]2-DG autoradiography. Methods : The study were divided into three groups by stimulation times. 45-mins stimulation group according to Sokoloffs method, 5-mins stimulation group according to Duncun's method, and 15-mins stimulation group. ;A venous catheter was equipped into right jugular vein. The rats (Sprague-Dawley rats, 230-260g) were kept fastened loosely on a holding platform without anesthesia. Electroacupuncture stimulation (5 ms, 2 Hz, 1~3 mA) were applied on the left Zusanli (ST36) acupoint and [14C]2-DG ($25{\mu}Ci/rat$) injection was performed through the catheter. After sacrifice, the brain and the spinal cord were made to sections for film image. The film images were digitalized as the isotope concentration based upon comparison of optical densities with that of the standards and normalized by the optical density of corpus callosum. Results : 1. 15-mins stimulation group was most effective among 3 experiments. 2. On 15-mins stimulation group, medial geniculate nucleus, intetpeduncular nucleus intermedius, ventral periolivary nucleus, caudal periolivary nucleus, medial superior olive, lateral paragigantocellular nucleus, including hypothalamic arcuate nucleus were increased by more than 25% (at least, p<0.05) by electroacupuncture stimulation. 3. Especially, the metabolism in hypothalamic arcuate nucleus was increased by 90% (p<0.05). 4. The fact that arcuate nucleus of hypothalamus might play a role of interconnection area between ascending and descending pathway of acupuncture stimulation was demonstrated visually. Conclusions : Advanced study on electroacupuncture stimulation elicited significant increase of metabolic activity in various nuclei of hypothalamus will provide the important experimental basis in research of the relationship between electroacupuncture stimulation and internal visceral functions.

  • PDF

GM-CSF reduces expression of chondroitin sulfate proteoglycan (CSPG) core proteins in TGF-β-treated primary astrocytes

  • Choi, Jung-Kyoung;Park, Sang-Yoon;Kim, Kil Hwan;Park, So Ra;Lee, Seok-Geun;Choi, Byung Hyune
    • BMB Reports
    • /
    • 제47권12호
    • /
    • pp.679-684
    • /
    • 2014
  • GM-CSF plays a role in the nervous system, particularly in cases of injury. A therapeutic effect of GM-CSF has been reported in rat models of various central nervous system injuries. We previously showed that GM-CSF could enhance long-term recovery in a rat spinal cord injury model, inhibiting glial scar formation and increasing the integrity of axonal structure. Here, we investigated molecular the mechanism(s) by which GM-CSF suppressed glial scar formation in an in vitro system using primary astrocytes treated with TGF-${\beta}$. GM-CSF repressed the expression of chondroitin sulfate proteoglycan (CSPG) core proteins in astrocytes treated with TGF-${\beta}$. GM-CSF also inhibited the TGF-${\beta}$-induced Rho-ROCK pathway, which is important in CSPG expression. Finally, the inhibitory effect of GM-CSF was blocked by a JAK inhibitor. These results may provide the basis for GM-CSF's effects in glial scar inhibition and ultimately for its therapeutic effect on neural cell injuries.

사람 신경 간세포에서 도파민 신경세포 분화유도에 대한 Nurr 1 유전자의 역할 규명 (Induction of Midbrain Dopaminergic Phenotype in Nurr 1-Over expressing Human Neural Stem Cells)

  • 김한집;이학섭;김현창;민철기;이명애;김승업;한진;염재범;김나리;박원선;김태호;김의용;한일용
    • KSBB Journal
    • /
    • 제20권5호
    • /
    • pp.363-370
    • /
    • 2005
  • 중추신경계의 신경간세포가 파킨슨병과 뇌졸중과 같은 퇴행성 뇌 질환의 치료뿐만이 아니라 신경세포 발생과정에서의 중요성 때문에 최근에 커다란 관심의 대상이 되고 있다. 중추신경계의 발생과정 동안에, 중뇌의 도파민 신경세포의 형성은 두 가지의 분자생물학적인 기작에 의해서 결정된다. 첫째로, FGF-8, sonic hedgehog 그리고 전사조절인자 인 Nurr1이 도파민 신경세포의 형질을 결정짓는다. 또 다른 기작으로는, 전사조절인자 인 $Lm{\times}lb$$Pt{\times}3$가 중요하게 관련되어있다. 특히 Nurr1이 결핍된 생쥐에서, 타이로신수산화효소 (Tyrosine bydroxylase, TH) 면역양성 세포들이 중뇌흑색질에서 발견되지 않으므로 Nurr1이 도파민 신경세포의 발생에 필수적임을 알 수 있다. 본 연구에서는 도파민 신경세포의 형질을 유도하는데 있어서 Nurr1이 매개하는 기작을 연구하기 위해서 레트로 바이러스를 이용하여 Nurr1을 도입한 무한증식 신경간세포를 사용하였다. Nurr1 유전자의 과발현 만으로는 신경간세포에서 도파민 신경세포의 형질을 유도하지는 못하지만, 레티노이드 (retinoid, RA)와 폴스콜린 (forskolin, FK)을 처리하여 TH와 방향성 L-아미노산 탈카르복시화효소 (aromatic L-amino acid decarboxylase, AADC) mRNA의 발현을 유도하였다. 또한, Nurr1 과발현 신경간세포를 사람 별아교세포와 공동배양 하여 TH 발현량을 많이 증가시켰다. 이러한 공동배양실험에서, RA와 FK를 처리하면 TH의 발현수준이 더욱 더 증가함을 발견하였다. 이러한 결과들은 Nurr1 유전자를 도입한 사람 신경간세포가 파킨슨병 환자들에게 세포이식을 통한 유전자 치료의 유용성을 시사하고 있다.

Functional Expression of P2Y Receptors in WERI-Rb1 Retinoblastoma Cells

  • Kim, Na-Hyun;Park, Kyu-Sang;Sohn, Joon-Hyung;Yeh, Byung-Il;Ko, Chang-Mann;Kong, In-Deok
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제15권1호
    • /
    • pp.61-66
    • /
    • 2011
  • P2Y receptors are metabotropic G-protein-coupled receptors, which are involved in many important biologic functions in the central nervous system including retina. Subtypes of P2Y receptors in retinal tissue vary according to the species and the cell types. We examined the molecular and pharmacologic profiles of P2Y purinoceptors in retinoblastoma cell, which has not been identified yet. To achieve this goal, we used $Ca^{2+}$ imaging technique and western blot analysis in WERI-Rb-1 cell, a human retinoblastoma cell line. ATP ($10\;{\mu}M$) elicited strong but transient $[Ca^{2+}]_i$ increase in a concentration dependent manner from more than 80% of the WERI-Rb-1 cells (n=46). Orders of potency of P2Y agonists in evoking $[Ca^{2+}]_i$ transients were 2MeS-ATP>ATP>>UTP=${\alpha}{\beta}$-MeATP, which was compatible with the subclass of $P2Y_1$ receptor. The $[Ca^{2+}]_i$ transients evoked by applications of 2MeS-ATP and/or ATP were also profoundly suppressed in the presence of $P2Y_1$ selective blocker (MRS 2179; $30\;{\mu}M$). $P2Y_1$ receptor expression in WERI-Rb-1 cells was also identified by using western blot. Taken together, $P2Y_1$ receptor is mainly expressed in a retinoblastoma cell, which elicits $Ca^{2+}$ release from internal $Ca^{2+}$ storage sites via the phospholipase C-mediated pathway. $P2Y_1$ receptor activation in retinoblastoma cell could be a useful model to investigate the role of purinergic $[Ca^{2+}]_i$ signaling in neural tissue as well as to find a novel therapeutic target to this lethal cancer.

흰쥐에서 WGA-HRP와 pseudorabies virus를 이용한 정관의 신경로에 대한 연구 (Neural pathway innervating ductus Deferens of rats by pseudorabies virus and WGA-HRP)

  • 이창현;정옥봉;고병문;이봉희;김수명;김인식;양홍현
    • 대한수의학회지
    • /
    • 제43권1호
    • /
    • pp.11-24
    • /
    • 2003
  • This experimental studies was to investigate the location of PNS and CNS labeled neurons following injection of 2% WGA-HRP and pseudorabies virus (PRY), Bartha strain, into the ductus deferens of rats. After survival times 4-5 days following injection of 2% WGA-HRP and PRV, the rats were perfused, and their brain, spinal cord, sympathetic ganglia and spinal ganglia were frozen sectioned ($30{\mu}m$). These sections were stained by HRP histochemical and PRY inummohistochemical staining methods, and observed with light microscope. The results were as follows ; 1. The location of sympathetic ganglia projecting to the ductus deferens were observed in pelvic ganglion, inferior mesenteric ganglion and L1-6 lwnbar sympathetic ganglia. 2. The location of spinal ganglia projecting to the ductus deferens were observed in T13-L6 spinal ganglia. 3. The PRY labeled neurons projecting to the ductus deferens were observed in lateral spinal nucleus, lamina I, II and X of cervical segments. In thoracic segments, PRY labeled neurons were observed in dorsomedial part of lamina I, II and III, and dorsolateral part of lamina IV and V. Densely labeled neurons were observed in intermediolateral nucleus. In first lumbar segment, labeled neurons were observed in intermediolateral nucleus and dorsal commisural nucleus. In sixth lumbar segment and sacral segments, dense labeled neurons were observed in sacral parasympathetic nuc., lamina IX and X. 4. In the medulla oblongata, PRV labeled neurons projecting to the ductus deferens were observed in the trigeminal spinal nuc., A1 noradrenalin cells/C1 adrenalin cells/caudoventrolateral reticular nuc., rostroventrolateral reticular nuc., area postrema, nuc. tractus solitarius, raphe obscurus nuc., raphe pallidus nuc., raphe magnus nuc., parapyramidal nuc., lateral reticular nuc., gigantocellular reticular nuc.. 5. In the pons, PRV labeled neurons projecting to the ductus deferens were ohserved in parabrachial nuc., Kolliker-Fuse nuc., locus cooruleus, subcooruleus nuc. and AS noradrenalin cells. 6. In midbrain, PRV labeled neurons projecting to the ductus deferens were observed in periaqueductal gray substance, substantia nigra and dorsal raphe nuc.. 7. In the diencephalon, PRV labeled neurons projecting to the ductus deferens were observed in paraventricular hypahalamic nuc., lateral hypothalamic nuc., retrochiasmatic nuc. and ventromedial hypothalamic nuc.. 8. In cerebrum, PRV labeled neurons projecting to the ductus deferens were observed in area 1 of parietal cortex. These results suggest that WGA-HRP labeled neurons of the spinal cord projecting to the rat ductus deferens might be the first-order neurons related to the viscero-somatic sensory and sympathetic postganglionic neurons, and PRV labeled neurons of the brain and spinal cord may be the second and third-order neurons response to the movement of smooth muscles in ductus deferens. These PRV labeled neurons may be central autonomic center related to the integration and modulation of reflex control linked to the sensory and motor system monitaing the internal environment. These observations provide evidence for previously unknown projections from ductus deferens to spinal cord and brain which may be play an important neuroanatornical basic evidence in the regulation of ductus deferens function.