• Title/Summary/Keyword: central composite design (CCD)

Search Result 160, Processing Time 0.026 seconds

A Study on Six Sigma Robust Design of Gripper Part for LCD Transfer System (식스 시그마 기반 LCD이송장치의 Gripper부 강건설계에 관한 연구)

  • Chung, W.J.;Jung, D.W.;Kim, S.B.;Yoon, Y.M.
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.5
    • /
    • pp.65-71
    • /
    • 2006
  • This paper presents the robust design of gripper part for a high-speed LCD(Liquid Crystal Display) transfer system. In this paper, the $1^{st}$ DOE(Design of Experiment) is conducted to find out main-effect factors for the design of gripper part. Thirty-six analysis are performed using $ANSYS^{(R)}$ and their results are statistically analyzed using $MINITAB^{(R)}$, which shows that the factors, i.e., First-width, Second-width, Rec-width, and thickness of gripper part, are more important than other factors. The main effect plots shows that the maximum deflection and mass of gripper part are minimized by increasing First-width, Second-width, Rec-width and thickness. The $2^{nd}$ DOE is conducted to obtain RSM(Response Surface Method) equation. The CCD(Central Composite Design) technique with four factors is used. Optimum design is conducted using the RSM equation. Genetic algorithm is used for optimal design. Six sigma robust design is conducted to find out a guideline for control range of design parameter. To obtain six sigma level quality, the standard deviations of design parameters are shown to be controlled within 5% of average design value.

Removal of sulphate from landfill leachate by crystallization

  • Aygun, Ahmet;Dogan, Selim;Argun, Mehmet Emin;Ates, Havva
    • Environmental Engineering Research
    • /
    • v.24 no.1
    • /
    • pp.24-30
    • /
    • 2019
  • The present study explores the applicability of response surface methodology (RSM) in conjunction with central composite design (CCD) matrix to statistically optimize ettringite crystallization process for the removal of sulphate from landfill leachate. A three factor-five coded level CCD with 20 runs, was performed to estimate the best fitted model. The RSM results indicated that the fitted quadratic regression model could be appropriate to predict sulfate removal efficiency. The pH was identified as the most dominant parameter affecting sulphate removal. 61.6% of maximum sulphate removal efficiency was obtained at pH of 11.06 for a 1.87 of $Ca/SO_4$ and 0.51 of $Al/SO_4$ molar ratios. The operating cost for ettringite crystallization at optimized conditions was calculated to be 0.52 $/$m^3$. The significance of independent variables and their interactions were tested by analysis of variance. Scanning electron microscope (SEM) and SEM coupled with energy dispersive X-Ray spectroscopy results confirmed the formation of ettringite crystal and were used to describe its morphology features.

Ultrasound-assisted Extraction for Development of Skin Whitening and Anti-wrinkling Cosmetic Materials from Spirulina platensis (스피루리나(Spirulina platensis)로부터 미백과 주름개선 생리활성 물질 분리를 위한 초음파 추출공정 개발)

  • Kim, So Hee;Jeon, Seong Jin;Kim, Jun Hee;Yeom, Suh Hee;Kim, Jin Woo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.54 no.3
    • /
    • pp.271-279
    • /
    • 2021
  • Ultrasound-assisted extraction (UAE) conditions, including extraction time, extraction temperature, and ethanol concentration, were optimized to increase the total flavonoid content (TFC), tyrosinase inhibitory activity (TIA), and collagenase inhibitory activity (CIA) of Spirulina platensis through central composite design (CCD). For the optimization of the three dependent variables, a quadratic regression model was derived from 17 experimental sets for the simultaneous maximization of TFC, TIA, and CIA. The predicted optimal UAE conditions were 44.0 min of extraction time, 82.8℃ of extraction temperature, and 96.0% of ethanol concentration. Under these conditions, 0.93 mg QE/g DM of TFC, 81.9% of CIA, and 92.1% of TIA were predicted. The CCD-based UAE optimization enabled an increase in TFC, CIA, and TIA, thereby confirming that the S. platensis extract can be used in the development of a cosmetic material with skin whitening and anti-wrinkle effects.

Application of the Response Surface Methodology and Process Optimization to the Electrochemical Degradation of Rhodamine B and N, N-Dimethyl-4-nitrosoanilin Using a Boron-doped Diamond Electrode (Boron-doped Diamond 전극을 이용한 Rhodamine B와 N, N-Dimethyl-4-nitrosoanilin의 전기화학적 분해에 반응표면분석법의 적용과 공정 최적화)

  • Kim, Dong-Seog;Park, Young-Seek
    • Journal of Environmental Health Sciences
    • /
    • v.36 no.4
    • /
    • pp.313-322
    • /
    • 2010
  • The aim of this research was to apply experimental design methodology to optimization of conditions of electrochemical oxidation of Rhodamine B (RhB) and N, N-Dimethyl-4-nitrosoaniline (RNO, indicative of the OH radical). The reactions of electrochemical oxidation of RhB degradation were mathematically described as a function of the parameters of current ($X_1$), NaCl dosage ($X_2$) and pH ($X_3$) and modeled by the use of the central composite design. The application of response surface methodology (RSM) yielded the following regression equation, which is an empirical relationship between the removal efficiency of RhB and RNO and test variables in a coded unit: RhB removal efficiency (%) = $94.21+7.02X_1+10.94X_2-16.06X_3+3.70X_1X_3+9.05X_2X_3-{3.46X_1}^2-{4.67X_2}^2-{7.09X_3}^2$; RNO removal efficiency (%) = $54.78+13.33X_1+14.93X_2- 16.90X_3$. The model predictions agreed well with the experimentally observed result. Graphical response surface and contour plots were used to locate the optimum point. The estimated ridge of maximum response and optimal conditions for the RhB degradation using canonical analysis was 100.0%(current, 0.80 A; NaCl dosage, 2.97% and pH 6.37).

Optimal Design of Impeller Shroud for Centrifugal Compressor Using Response Surface Method (반응표면법을 이용한 원심압축기 임펠러 쉬라우드 형상최적설계)

  • Kang, Hyun-Su;Hwang, In-Ju;Kim, Youn-Jea
    • The KSFM Journal of Fluid Machinery
    • /
    • v.18 no.4
    • /
    • pp.43-48
    • /
    • 2015
  • In this study, a method for optimal design of impeller shroud for centrifugal compressor using response surface method (RSM) and multi-objective genetic algorithm (MOGA) was studied. Numerical simulation was conducted using ANSYS CFX with various configurations of shroud. Each of the design parameters was divided into 3 levels. Total 15 design points were planned by central composite design (CCD) method, which is one of the design of experiment (DOE) techniques. Response surfaces based on the results of DOE were used to find the optimal shape of impeller shroud for high aerodynamic performance. The whole process of optimization was conducted using ANSYS Design Xplorer (DX). Results showed that the isentropic efficiency, which is the main performance parameter of the centrifugal compressor, was increased 0.4% through the optimization.

Optimization of Medium to Improve Protease Production Using Response Surface Methodology by Bacillus amyloliquefaciens SRCM115785 (반응표면분석법을 이용한 Bacillus amyloliquefaciens SRCM115785의 protease 활성증가를 위한 배지 최적화)

  • Yang, Hee Gun;Ha, Gwangsu;Ryu, Myeong Seon;Park, Se Won;Jeong, Ho Jin;Yang, Hee-Jong;Jeong, Do-Youn
    • Journal of Life Science
    • /
    • v.31 no.8
    • /
    • pp.761-770
    • /
    • 2021
  • In this study, the optimal medium composition for enhancing protease production was established by the Bacillus strain isolated from Makgeolli, a traditional fermented food, using the response surface methodology. B. amyloliquefaciens SRCM115785 was selected as the protease producer by productivity analysis and identified by 16S rRNA gene sequencing. Plackett-Burman design (PBD) was introduced to analyze the effect of each component on protease production among the 11 selected medium components. As a result, glucose, yeast extract, and beef extract were finally selected as factors for enhancing protease production. Central composite design (CCD) analysis was designed as a method to determine the optimal concentration of each component for protease production and the concentration of each medium composition for maximum protease production was predicted to glucose 6.75 g/l, yeast extract 12.42 g/l and beef extract 17.48 g/l. The suitability of the experimental model was proved using ANOVA analysis and as a result of quantitative analysis to prove this, the amount of increase was 230.47% compared to the LB medium used as a control. Through this study, the optimization of medium composition for enhancing protease production was established, and based on this, it is expected that it can be efficient use of protease as an industrial enzyme.

Optimizing Boiling Condition for the Preparation of Fish Extracts

  • Park Seong Min;Lee Keun Tai;Yoon Ho Dong;Ryu Hong Soo
    • Fisheries and Aquatic Sciences
    • /
    • v.2 no.1
    • /
    • pp.8-11
    • /
    • 1999
  • The optimum boiling condition was determined for fish extracts by response surface model. Model equations were designed with effect of time (T) and the amount of added water (W) on the level of released free amino acid. Based on the high (>0.9) coefficient of determination and low (<0.01) level of significant, those model was approved to be significant. The added water amount of higher regression coefficient $ (\beta_2)$, showed a greater influence on releasing free amino acids than boiling time. The optimum boiling times are 6 hours for crucian carp, 5 hours for bastard halibut, 7 hours for loach and 5 hours for jacopever. The ratio of added water to sample 1 (v/w) could be applied to all fish samples at $100\pm2^{\circ}C$.

  • PDF

Optimizing the Friction Stir Spot Welding Parameters to Attain Maximum Strength in Al/Mg Dissimilar Joints

  • Sundaram, Manickam;Visvalingam, Balasubramanian
    • Journal of Welding and Joining
    • /
    • v.34 no.3
    • /
    • pp.23-30
    • /
    • 2016
  • This paper discusses the optimization of friction stir spot welding (FSSW) process parameters for joining Aluminum alloy (AA6061-T6) with Magnesium alloy (AZ31B) sheets. Prior to optimization an empirical relationship was developed to predict the Tensile Shear Fracture Load (TSFL) incorporating the four most important FSSW parameters, i.e., tool rotational speed, plunge rate, dwell time and tool diameter ratio, using response surface methodology (RSM). The experiments were conducted based on four factor, five levels central composite rotatable design (CCD) matrix. The maximum TSFL obtained was 3.61kN, with the tool rotation of 1000 rpm, plunge rate of 16 mm/min, dwell time of 5 sec and tool diameter ratio of 2.5.

Experimental Investigation of the Effect of Composition on the Performance and Characteristics of PEM Fuel Cell Catalyst Layers

  • Baik, Jung-Shik;Seong, Dong-Mug;Kim, Tae-Min
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.157-160
    • /
    • 2007
  • The catalyst layer of a proton exchange membrane (PEM) fuel cell is a mixture of polymer, carbon, and platinum. The characteristics of the catalyst layer play critical role in determining the performance of the PEM fuel cell. This research investigates the role of catalyst layer composition using a Central Composite Design (CCD) experiment with two factors which are Nafion content and carbon loading while the platinum catalyst surface area is held constant. For each catalyst layer composition, polarization curves are measured to evaluate cell performance at common operating conditions, Electrochemical Impedance Spectroscopy (EIS), and Cyclic Voltammetry (CV) are then applied to investigate the cause of the observed variations in performance. The results show that both Nafion and carbon content significantly affect MEA performance. The ohmic resistance and active catalyst area of the cell do not correlate with catalyst layer composition, and observed variations in the cell resistance and active catalyst area produced changes in performance that were not significant relative to compositions of catalyst layers.

  • PDF

Efficient Approximation Method for Constructing Quadratic Response Surface Model

  • Park, Dong-Hoon;Hong, Kyung-Jin;Kim, Min-Soo
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.7
    • /
    • pp.876-888
    • /
    • 2001
  • For a large scaled optimization based on response surface methods, an efficient quadratic approximation method is presented in the context of the trust region model management strategy. If the number of design variables is η, the proposed method requires only 2η+1 design points for one approximation, which are a center point and tow additional axial points within a systematically adjusted trust region. These design points are used to uniquely determine the main effect terms such as the linear and quadratic regression coefficients. A quasi-Newton formula then uses these linear and quadratic coefficients to progressively update the two-factor interaction effect terms as the sequential approximate optimization progresses. In order to show the numerical performance of the proposed method, a typical unconstrained optimization problem and two dynamic response optimization problems with multiple objective are solved. Finally, their optimization results compared with those of the central composite designs (CCD) or the over-determined D-optimality criterion show that the proposed method gives more efficient results than others.

  • PDF