• Title/Summary/Keyword: central composite design (CCD)

Search Result 161, Processing Time 0.027 seconds

Optimization of Sweet Rice Muffin Processing Prepared with Oak Mushroom (Lentinus edodes) Powder (표고버섯 첨가 찹쌀머핀의 최적화 및 품질특성)

  • Kim, Bo-Ram;Joo, Na-Mi
    • Journal of the Korean Society of Food Culture
    • /
    • v.27 no.2
    • /
    • pp.202-210
    • /
    • 2012
  • The purpose of this study was to bake sweet rice muffins with oak mushroom ($Lentinus$ $edodes$) powder. The process included substituting sweet rice flour for cake flour and adding oak mushroom powder. This study determined the optimal mixing conditions of oak mushroom muffins by adjusting the amounts of oak mushroom powder, whole eggs, and soybean oil. The mixing conditions for the oak mushroom muffins included 3 categories: oak mushroom powder (X1), whole eggs (X2), and soybean oil (X3) by Central Composite Design (CCD) which was optimized by Response Surface Methodology (RSM). Oak mushroom muffin formulation was optimized using rheology. Yellowness (p<0.001) and redness (p<0.05) displayed a linear model pattern, whereas lightness (p<0.05) was represented by a quadratic model. Among the sensory properties, variables that appeared to show significant values such as appearance (p<0.5), texture (p<0.5), and overall quality (p<0.5) were used to identify optimums. The result of mechanical properties showed significant values in gumminess (p<0.5) and chewiness (p<0.5). The numerical and graphical methods used in this study determined that the optimum formulation for oak mushroom powder sweet rice muffins was 8.75 g of oak mushroom powder, 235.95 g of whole eggs, and 19.93 g of soybean oil.

Quality Characteristics and Optimization of Rice Pound Cake prepared with Euonymus alatus by Using Response Surface Methodology (반응표면분석법을 이용한 혼잎나물 첨가 쌀 파운드케이크의 품질 특성 및 최적화)

  • Kim, Dah-Sol;Jeong, Hee Sun;Joo, Nami
    • Culinary science and hospitality research
    • /
    • v.23 no.4
    • /
    • pp.81-92
    • /
    • 2017
  • This research was studied to optimize the recipe of rice pound cake with two concentrations of Euonymus alatus and grape seed oil, using central composite design (CCD). The mixing condition of rice pound cake was optimized by subjecting it to sensory evaluation and mechanical and physicochemical analysis, using response surface methodology (RSM). The results of the mechanical and physicochemical analysis showed significant values for color (lightness, redness, yellowness), texture (hardness, springiness, chewiness, gumminess, cohesiveness), loss rate, volume, specific volume, sweetness, saltiness, moisture content and pH (p<0.05). The results of the sensory evaluation showed significant values for color, flavor, taste, softness, appearance and overall quality (p<0.05). As a result, the optimized compounding ratio was found to be 4.28 g of Euonymus alatus and 33.18 g of grape seed oil.

Quality Characteristics of Rice Cookies Prepared with Stevia rebaudiana Leaf (스테비아(Stevia rebaudiana)잎 첨가 쌀쿠키의 품질 특성)

  • Kim, Dah-Sol;Shin, Jihun;Joo, Nami
    • Journal of the Korean Dietetic Association
    • /
    • v.23 no.1
    • /
    • pp.14-26
    • /
    • 2017
  • The purpose of this study was to determine the optimal recipe of rice cookies with two different amounts of Stevia rebaudiana leaf and grape seed oil, using a central composite design (CCD). In addition, mixing conditions of rice cookies were optimized by sensory evaluation and mechanical and physicochemical analysis using response surface methodology (RSM). RSM was used to obtain 10 experimental points (including two replicates of Stevia rebaudiana leaf and Grape seed oil), and the formulation of Stevia rebaudiana leaf added rice cookies was optimized using rheology. The results of mechanical and physicochemical analysis showed significant values for lightness, redness, yellowness, hardness, spread factor, loss rate, leavening rate, sweetness, moisture, pH, and density (P<0.001), results of the sensory evaluation showed significant values for color, flavor, taste, texture, appearance, and overall quality (P<0.05). As a results, optimal sensory ratio was found to be 1.98 g of Stevia rebaudiana leaf and 37.94 g of Grape seed oil.

Optimization of Alkali Pretreatment from Steam Exploded Barley Husk to Enhance Glucose Fraction Using Response Surface Methodology

  • Jung, Ji Young;Ha, Si Young;Park, Jai Hyun;Yang, Jae-Kyung
    • Journal of the Korean Wood Science and Technology
    • /
    • v.45 no.2
    • /
    • pp.182-194
    • /
    • 2017
  • The optimum alkali pretreatment parameters (reaction time, reaction temperature and potassium hydroxide concentration) for facilitate the conversion into fermentable sugar (glucose) from steam exploded (severity log Ro 2.45) barley husk were determined using Response Surface Methodology (RSM) based on a factorial Central Composite Design (CCD). The prediction of the response was carried out by a second-order polynomial model and regression analysis revealed that more than 88% of the variation can be explained by the models. The optimum conditions for maximum cellulose content were determined to be 201 min reaction time, $124^{\circ}C$ reaction temperature and 0.9% potassium hydroxide concentration. This data shows that the actual value obtained was similar to the predicted value calculated from the model. The pretreated barley husk using acid hydrolysis resulted in a glucose conversion of 94.6%. This research of steam explosion and alkali pretreatment was a promising method to improve cellulose-rich residue for lignocellulosic biomass.

Selection of an Optimal Welding Condition for Back Bead Formation in GMA Root Pass Welding (GMA 초층용접에서 이면비드 생성을 위한 최적용접조건의 선정)

  • Yun, Young-Kil;Kim, Jae-Woong;Yun, Seok-Chul
    • Journal of Welding and Joining
    • /
    • v.28 no.5
    • /
    • pp.86-92
    • /
    • 2010
  • In GMAW processes, bead geometry is a criterion to estimate welding quality. Bead geometry is affected by welding current, arc voltage, welding speed, shielding gas and so on. Thus the welding condition has to be selected carefully. In this paper, an experimental method for the selection of optimal welding condition was proposed in the root pass welding which was done along the GMA V-grooved butt weld joint. This method uses the response surface analysis in which the width and height of back bead were chosen as the quality variables of the weld. The overall desirability function, which is the combined desirability function for the two quality variables, was used as the objective function for getting the optimal welding condition. Through the experiments, the target values of the back bead width and the height were chosen as 4mm and 1mm respectively for the V-grooved butt weld joint. From a series of welding test, it was revealed that a uniform weld bead can be obtained by adopting the optimal welding condition which was determined according to the method proposed.

Drug Targeting to Lungs by Way of Microspheres

  • Harsha, N. Sree;Rani, R.H. Shobha
    • Archives of Pharmacal Research
    • /
    • v.29 no.7
    • /
    • pp.598-604
    • /
    • 2006
  • In many conventional drug delivery systems in vogue, failure to deliver efficient drug delivery at the target site/organs; is evident as a result, less efficacious pharmacological response is elicited. Microspheres can be derived a remedial measure which can improve site-specific drug delivery to a considerable extent. As an application, Lung-targeting Ofloxacin-loaded gelatin microspheres (GLOME) were prepared by water in oil emulsion method. The Central Composite Design (CCD) was used to optimize the process of preparation, the appearance and size distribution were examined by scanning electron microscopy, the aspects such as in vitro release characteristics, stability, drug loading, loading efficiency, pharmacokinetics and tissue distribution in albino mice were studied. The experimental results showed that the microspheres in the range of $0.32-22\;{\mu}m$. The drug loading and loading efficiency were 61.05 and 91.55% respectively. The in vitro release profile of the microspheres matched the korsmeyer’s peppas release pattern, and release at 1h was 42%, while for the original drug, ofloxacin under the same conditions 90.02% released in the first half an hour. After i.v. administration (15 min), the drug concentration of microspheres group in lung in albino mice was $1048\;{\mu}g/g$, while that of controlled group was $6.77\;{\mu}g/g$. GLOME found to release the drug to a maximum extent in the target tissue, lungs.

Integrated Whole-Cell Biocatalysis for Trehalose Production from Maltose Using Permeabilized Pseudomonas monteilii Cells and Bioremoval of Byproduct

  • Trakarnpaiboon, Srisakul;Champreda, Verawat
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.8
    • /
    • pp.1054-1063
    • /
    • 2022
  • Trehalose is a non-conventional sugar with potent applications in the food, healthcare and biopharma industries. In this study, trehalose was synthesized from maltose using whole-cell Pseudomonas monteilii TBRC 1196 producing trehalose synthase (TreS) as the biocatalyst. The reaction condition was optimized using 1% Triton X-100 permeabilized cells. According to our central composite design (CCD) experiment, the optimal process was achieved at 35℃ and pH 8.0 for 24 h, resulting in the maximum trehalose yield of 51.60 g/g after 12 h using an initial cell loading of 94 g/l. Scale-up production in a lab-scale bioreactor led to the final trehalose concentration of 51.91 g/l with a yield of 51.60 g/g and productivity of 4.37 g/l/h together with 8.24 g/l glucose as a byproduct. A one-pot process integrating trehalose production and byproduct bioremoval showed 53.35% trehalose yield from 107.4 g/l after 15 h by permeabilized P. moteilii cells. The residual maltose and glucose were subsequently removed by Saccharomyces cerevisiae TBRC 12153, resulting in trehalose recovery of 99.23% with 24.85 g/l ethanol obtained as a co-product. The present work provides an integrated alternative process for trehalose production from maltose syrup in bio-industry.

RSM-based Practical Optimum Design of TMD for Control of Structural Response Considering Weighted Multiple Objectives (가중 다목적성을 고려한 구조물 응답 제어용 TMD의 RSM 기반 실용적 최적 설계)

  • Do, Jeongyun;Guk, Seongoh;Kim, Dookie
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.6
    • /
    • pp.113-125
    • /
    • 2017
  • In spite of bulk literature about the tuning of TMD, the effectiveness of TMD in reducing the seismic response of engineering structures is still in a row. This paper deals with the optimum tuning parameters of a passive TMD and simulated on MATLAB with a ten-story numerical shear building. A weighted multi-objective optimization method based on computer experiment consisting of coupled with central composite design(CCD) central composite design and response surface methodology(RSM) was applied to find out the optimum tuning parameters of TMD. After the optimization, the so-conceived TMD turns out to be optimal with respect to the specific seismic event, hence allowing for an optimum reduction in seismic response. The method was employed on above structure by assuming first the El Centro seismic input as a sort of benchmark excitation, and then additional recent strong-motion earthquakes. It is found that the RSM based weighted multi-objective optimized damper improves frequency responses and root mean square displacements of the structure without TMD by 31.6% and 82.3% under El Centro earthquake, respectively, and has an equal or higher performance than the conventionally designed dampers with respect to frequency responses and root mean square displacements and when applied to earthquakes.

Optimization of Medium Components using Response Surface Methodology for Cost-effective Mannitol Production by Leuconostoc mesenteroides SRCM201425 (반응표면분석법을 이용한 Leuconostoc mesenteroides SRCM201425의 만니톨 생산배지 최적화)

  • Ha, Gwangsu;Shin, Su-Jin;Jeong, Seong-Yeop;Yang, HoYeon;Im, Sua;Heo, JuHee;Yang, Hee-Jong;Jeong, Do-Youn
    • Journal of Life Science
    • /
    • v.29 no.8
    • /
    • pp.861-870
    • /
    • 2019
  • This study was undertaken to establish optimum medium compositions for cost-effective mannitol production by Leuconostoc mesenteroides SRCM201425 isolated from kimchi. L. mesenteroides SRCM21425 from kimchi was selected for efficient mannitol production based on fructose analysis and identified by its 16S rRNA gene sequence, as well as by carbohydrate fermentation pattern analysis. To enhance mannitol production by L. mesenteroides SRCM201425, the effects of carbon, nitrogen, and mineral sources on mannitol production were first determined using Plackett-Burman design (PBD). The effects of 11 variables on mannitol production were investigated of which three variables, fructose, sucrose, and peptone, were selected. In the second step, each concentration of fructose, sucrose, and peptone was optimized using a central composite design (CCD) and response surface analysis. The predicted concentrations of fructose, sucrose, and peptone were 38.68 g/l, 30 g/l, and 39.67 g/l, respectively. The mathematical response model was reliable, with a coefficient of determination of $R^2=0.9185$. Mannitol production increased 20-fold as compared with the MRS medium, corresponding to a mannitol yield 97.46% when compared to MRS supplemented with 100 g/l of fructose in flask system. Furthermore, the production in the optimized medium was cost-effective. The findings of this study can be expected to be useful in biological production for catalytic hydrogenation causing byproduct and additional production costs.

Shape Optimization of High Power Centrifugal Compressor Using Multi-Objective Optimal Method (다목적 최적화 기법을 이용한 고출력 원심압축기 형상 최적설계)

  • Kang, Hyun Su;Lee, Jeong Min;Kim, Youn Jea
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.5
    • /
    • pp.435-441
    • /
    • 2015
  • In this study, a method for optimal design of impeller and diffuser blades in the centrifugal compressor using response surface method (RSM) and multi-objective genetic algorithm (MOGA) was evaluated. A numerical simulation was conducted using ANSYS CFX with various values of impeller and diffuser parameters, which consist of leading edge (LE) angle, trailing edge (TE) angle, and blade thickness. Each of the parameters was divided into three levels. A total of 45 design points were planned using central composite design (CCD), which is one of the design of experiment (DOE) techniques. Response surfaces that were generated on the basis of the results of DOE were used to determine the optimal shape of impeller and diffuser blade. The entire process of optimization was conducted using ANSYS Design Xplorer (DX). Through the optimization, isentropic efficiency and pressure recovery coefficient, which are the main performance parameters of the centrifugal compressor, were increased by 0.3 and 5, respectively.