• 제목/요약/키워드: center point

검색결과 5,008건 처리시간 0.032초

증기발생기 세관의 중심좌표추출에 대한 연구 (Study on Extraction of the Center Point of Steam Generator Tubes)

  • 조재완;김창회;서용칠;최영수;김승호
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2002년도 하계종합학술대회 논문집(4)
    • /
    • pp.263-266
    • /
    • 2002
  • This paper describes extraction procedure for the center coordinates of steam generator tubes of Youngkwang NPP #6, which are arrayed in triangular patterns. Steam generator tube images taken with wide field-of-view lens and low-light lamp mounted on a ccd camera tend to have low contrast, because steam generator is sealed and poorly illuminated. The extraction procedures consists of two steps. The first step is to process the region with superior contrast in entire image of steam generator tubes and to extract the center points. Using the extracted coordinates in the first step and the geometrical array characteristics of tubes lined up in regular triangle forms, the central points of the rest region with low contrast are estimated. The straight lines from center point of a tube to neighbour points in horizontal and 60, 120$^{\circ}$ degree directions are derived. The intersections of straight line In horizontal direction and slant line in regular triangle direction are selected as the center coordinates of steam generator tubes. The Chi-square interpolation method is used to determine the line's coefficients in horizontal and regular triangle direction.

  • PDF

연료의 비등점이 고온상태 분사특성에 미치는 영향 (A Study on the Effect of Fuel Boiling Point on Injection Characteristics at High Fuel Temperature Conditions)

  • 이형주;최호진;김일두;정병훈;한정식
    • 한국추진공학회지
    • /
    • 제18권2호
    • /
    • pp.42-51
    • /
    • 2014
  • 기존 항공유보다 비등점을 높인 고비등점 연료에 대하여 다양한 분사 압력 조건에서 비등점 이상의 온도까지 연료를 가열하는 경우의 분사특성을 실험적으로 연구하였다. 연료 온도 상승에 따른 인젝터의 특성은 유량계수(${\alpha}$)와 캐비테이션 수($K_c$)를 파라미터로 나타내었는데, 고온에서의 각 연료별 ${\alpha}$ 특성을 $K_c$에 대해 나타내면 그 경향이 모두 유사한 것으로 확인되었다. 한편, 고비점 연료들은 기존 연료에 비하여 비등의 효과가 나타나기 시작하는 온도가 더 높아졌을 뿐만 아니라, 그 이상의 온도에서도 분사 특성에 미치는 인젝터 내부의 비등 영향을 더 적게 받았다.

Determination of Adequate Entry Angle of Lumbar Sympathetic Ganglion Block in Korean

  • Kim, Won-Ho;Kim, Sang-Kwon;Lee, Chul-Joong;Kim, Tae-Hyeong;Sim, Woo-Seok
    • The Korean Journal of Pain
    • /
    • 제23권1호
    • /
    • pp.11-17
    • /
    • 2010
  • Background: The target of lumbar sympathetic ganglion block is the anterolateral surface of the L2, 3 and 4 vertebral bodies, where the lumbar sympathetic ganglion usually lies. In most cases, a block-needle is inserted approximately 5-8 cm lateral to spinous process on the skin and directed to the anterolateral surface of vertebral body obliquely. The purpose of this study is to determine the safe entry angle and entry point in Korean by using the abdominal CT scan images. Methods: The abdominal CT images of eighty five patients were recruited to this study. The minimal angle aimed at the lumbar sympathetic ganglion that can pass through the lateral aspect of body and maximal angle that avoids puncturing the kidney, ureter or retroperitoneal space were measured. The distance from midline to skin entry point was also measured. Results: There was no significant difference in entry angle among L2, 3, and 4 level. The entry angle was similar in the right and left side, and in males and females. The entry angle of old age group was significantly smaller than that of young age group. The calculated safe entry angle was $30.5{\pm}0.4^{\circ}$ and entry point was $7.7{\pm}0.2\;cm$ and $6.7{\pm}0.1\;cm$ lateral from midline in males and females respectively. Conclusions: These measurements can be used as a reference for lumbar sympathetic ganglion block and radiofrequency lesioning. Prior to performing the lumbar sympathetic ganglion block for cancer patients, the abdominal CT scan should be reviewed to prevent complications.

Kinect Depth 카메라를이용한 마우스 커서의 위치 선정에 관한 연구 (A Study On Positioning Of Mouse Cursor Using Kinect Depth Camera)

  • 구봉회;이승호
    • 전기전자학회논문지
    • /
    • 제18권4호
    • /
    • pp.478-484
    • /
    • 2014
  • 본 논문에서는 Kinect Depth 카메라에서 손가락의 방향을 이용한 마우스 커서의 위치 선정에 관한 새로운 방법을 제안한다. 제안하는 방법은 손가락의 방향이 카메라를 향해 있을 경우는 거리변환을 이용한 손의 중점좌표를 이용한다. 손가락의 방향이 카메라를 향해 있지 않을 경우에는 손가락의 끝점 좌표를 이용한다. 손의 중점좌표는 전처리를 거친 영상의 거리변환 결과에서 가장 밝은 픽셀의 좌표를 이용하여 구한다. 손가락의 방향이 카메라를 향해 있을 경우에는 손가락의 끝점 좌표와 손의 중점 좌표 사이의 거리가 가까워지므로 중점좌표를 이용하여, 위치 선정의 정확도를 향상시킬 수 있게 된다. 손가락의 끝점 좌표는 손 영역만을 추출한 영상에서 팔 부분을 제거하여 영상의 중심에서 가장 멀리 떨어져있는 픽셀을 이용하여 구한다. 본 논문에서 제안하는 커서 위치 선정의 정확도를 측정하기 위해 임의의 5개의 기준 좌표를 선정하고 기준 좌표와 측정된 마우스 좌표사이의 오차를 500회 반복하여 측정하여 에러율을 측정한 결과, 평균 11 % 미만의 오차율을 나타내어 제안한 방법의 정확도를 확인할 수가 있었다.

선형에 따른 전심의 이동에 관한 연구 (A Study on Shifting of Pivoting Point in accordance with Configuration of Ships)

  • 최명식
    • 한국항해학회지
    • /
    • 제10권2호
    • /
    • pp.83-96
    • /
    • 1986
  • In the restricted sea way such as fair way in harbor, narrow channel etc, the safe ship-handling is a very important problem, which is greatly related with turning ability of ships. It is of great importance that ship-handlers can grasp the position of pivoting point varying with time increase at any moment for relevant steering activities. Mean while, in advanced ship-building countries they study and investigated pivoting point related with turning characteristics, hut their main interest lies in ship design, not in safe ship controlling and maneuvering. In this regards it is the purpose of this paper to provide ship-handlers better under standing of pivoting point location together with turning characteristics and then to help them in safe ship-handling by presenting fact that pivoting points vary according to configuration of ships. The author calculated the variation of pivoting point as per time increase for various type of vessels, based on the hydrodynamic derivatives obtained at test of Davidson Laboratory of Stevens Institutes of Technology , New Jersey, U.S.A. The results were classified and investigated according to the magnitude of block coefficient , length-beam ratio, length-draft ratio, rudder area ratio ete, and undermentioned results were obtained. (1) The trajectory of pivoting point due to variation of rudder angle are all the same at any time, though the magenitude of turning circle are changed variously. (2) The moving of pivoting point is affected by the magnitude of block coefficient, length-beam ratio, length-draft ratio, however the effect by rudder area ratio might be disregarded. (3) In controlling and maneuvering of vessels in harbor, ship-handlers might regard that the pivoting point would be placed on 0.2~0.3L forward from center of gravity at initial stage. (4) The pivoting point of VLCC or container feeder vessels which have block coefficient more than 0.8 and length-beam ratio less than 6.5 are located on or over bow in the steady turning. (5) When a vessel intends to avoid some floating obstruction such as buoy forward around her eourse, the ship-handler might consider that the pivoting point would be close by bow in ballast condition and cloase by center of gravity in full-loaded condition.

  • PDF

상악 제일대구치의 저항중심에 관한 유한요소법적 분석 (A FINITE ELEMENT ANALYSIS OF THE CENTER OF RESISTANCE OF A MAXILLARY FIRST MOLAR)

  • 조정현;이기수;박영국
    • 대한치과교정학회지
    • /
    • 제23권2호
    • /
    • pp.263-273
    • /
    • 1993
  • The purpose of this study was to analyse the center of resistance of the maxillary first molar using the 3-dimension finite element method. An extracted maxillary first molar of normal shape and average root length was selected and sectioned every 1.5mm parallel to the cementoenamel junction. Each section was traced and digitized to construct 3-D finite element model of the maxillary first molar. After a certain magnitude of counterbalancing moment(M) was applied to the tooth, a varying single force(F) of distomesial direction was applied to a certain point of th tooth until the tooth was translated. The force producing translation(Ft) was substituted to the equation ${\Delta}d=M/Ft$ to calculate the center of resistance of the maxillary first molar. And reducing the alveolar bone level 1.68mm, and 3.36mm below to the cementoenamel junction, the tooth movement was analysed to see the effect of reducing the alveolar bone level to the location of the center of resistance. The results were as follows ; 1. The center of resistance of the maxillary first molar was 3.72mm apical, 1.10mm buccal, and 0.71mm mesial to the geometric center of the horizontally sectioned surface at the cementoenamel junction. This point was 0.36mm apical, 1.20mm buccal, and 0.71mm mesial to the trifurcation point, indicating that it was not on the tooth root. 2. As the alveolar bone level was reduced, the center of resistance of the maxillary first molar was moved to the apical direction.

  • PDF

차체 플러그 용접품질에 영향을 미치는 아크 위치에 대한 실험적 기초 연구 (A Study on the Arc Position which Influence on Quality of Plug Welding in the Vehicle Body)

  • 이경민;김재성;이보영
    • Journal of Welding and Joining
    • /
    • 제30권3호
    • /
    • pp.66-70
    • /
    • 2012
  • Welding is an essential process in the automotive industry. Most welding processes that are used for auto body is spot welding. And $CO_2$ arc welding is used in a small part. In production field, $CO_2$ arc welding process is decreased and spot welding process is increased due to welding quality is poor and defects are occurred in $CO_2$ arc welding process frequently. But $CO_2$ arc welding process should be used at robot interference parts and closed parts where spot welding couldn't. $CO_2$ welding is divided into lap welding and plug arc spot welding. In case of plug arc spot welding, burn through and under fill were caused in various welding environment such as different thickness combinations of base metal, teaching point, over the two steps welding and inconsistent voltage/current. It makes some problem like poor quality of welding area and decrease the productivity. In this study, we will evaluate the effect of teaching point through the weld pool behavior and bead geometry in the arc spot welding at the plut hole. Welding position is horizontal position. And galvanized steel sheet of 2.0mm thickness that has plug hole of 6mm diameter was used. Teaching point was changed by center, top, bottom, left and right of the plug hole. At each condition, the phenomenon of weld pool behavior was confirmed using a high-speed camera. As the result, we find the center of plug hole is the most optimal teaching point. In the other teaching point, under fill was occurred at the plug hole. This phenomenon is caused by gravity and surface tension. For performance of arc spot welding at the plug hole, the teaching condition should be controlled at a center of plug hole.

램프형 포인트하중에 의한 반무한 탄성체의 응력파해석 (An Analysis of Stress Waves in an Elastic Half Space to a Normal Point Force of Ramp Type in Time)

  • 김현실;김재승;강현주;김상렬
    • 대한기계학회논문집A
    • /
    • 제21권4호
    • /
    • pp.673-678
    • /
    • 1997
  • Stress wave propagations in an elastic half space to a normal point force of ramp type in time are analyzed. The governing equations are transformed by applying the Laplace and Hankel transforms with respect to time and radial distance. The inversion of Laplace transforms are performed by employing the Cagniard-de Hoop method, where the Rayleigh waves at surface are obtained by including the residue terms. The stress waves computed at the location very cose to the surface are shown to be almost identical to the surface waves obtained by the residue method except the Rayleigh wavefront. It is found that at the surface, the stresses are dominated by the Rayleigh waves, whose amplitudes increase linearly with time when time is very large. It is also found that in the interior part, the radial stress has a logarithmic singularity at the shear wavefront, while tangential stress shows no singularity.

구조 특성을 반영한 인간형 로봇을 위한 실시간 CoM/ZMP 궤적 변환 방법 (Real-Time CoM/ZMP Trajectory Transformation Method for Humanoid Robots Considering Structure Characteristics)

  • 홍석민
    • 한국항행학회논문지
    • /
    • 제21권1호
    • /
    • pp.132-137
    • /
    • 2017
  • 본 논문에서는 로봇의 구조나 보행 상황을 반영해 하나의 보행 패턴을 다른 보행 패턴으로 변환하게 해주는 영모멘트 점 (ZMP; zero moment point)와 질량 중심 (CoM; center of mass)의 실시간 변환 방법을 제안한다. 일반적으로 휴머노이드 로봇은 높이와 질량과 같은 자체적인 구조 특성을 가지고 있다. 이러한 구조적 특성으로 인해 인간 또는 휴머노이드 로봇으로부터 측정되거나 생성되어진 CoM / ZMP 보행 패턴을 다른 로봇에 직접 적용하는 것은 어렵다. 이를 위하여 간단한 휴머노이드 로봇 모델인 cart-table model을 사용해 보폭의 길이, 보행 시간, CoM 높이 변화에 따라 보행 패턴의 특성을 분석한다. 그러한 분석으로부터 변환 방정식을 유도하고 시뮬레이션을 통해 제안된 방법을 검증한다.

안모 비대칭 환자의 악교정수술에서 상악 후방부의 수평이동에 대한 고려 (CONSIDERATION OF TRANSVERSE MOVEMENT OF POSTERIOR MAXILLA IN ORTHOGNATHIC SURGERY OF FACIAL ASYMMETRY : CASE REPORTS)

  • 장현호;윤석채;류성호;김재승
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제26권2호
    • /
    • pp.172-178
    • /
    • 2000
  • When we establish treatment planning of facial asymmetry, we must predict each asymmetrical element that will be changed upon coronal, axial, sagittal plane. At the visual point, prediction of the change of coronal plane is most important. It is important difference between Rt. and Lt. mandibular angle belonging to posterior coronal plane, as well as anterior coronal plane, such as upper and lower incisor, or midline of chin point. Several methods for control bulk of mandibular angle are additional angle shaving after osteotomy, grinding contact area between proximal and distal segment for decrease the volume, or bone graft for increase the volume. But, at the point of bimaxillary surgery, transverse position of posterior maxilla is an important factor for control it. So, we would report transverse movement of posterior maxilla for decrease asymmetry on the posterior coronal plane of face, that is, asymmetry of mandibular angular portion.

  • PDF