• Title/Summary/Keyword: center pipe

Search Result 463, Processing Time 0.029 seconds

Investigation of Axially Loaded Jacked Pile Behavior by Pile Load Test (말뚝재하시험을 통한 압입강관말뚝의 연직지지거동 분석)

  • Baek, Sung-Ha;Do, Eun-Su;Kim, Seok-Jung
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.7
    • /
    • pp.39-49
    • /
    • 2018
  • Jacked pile that involves the use of hydraulic jacks to press the piles into the ground is free from noise and vibration, and is possibly installed within a limited construction area. Thus, as an alternative to conventional pile driving methods, pile jacking could become widely accepted for the construction projects in urban area (e.g., reconstruction or remodeling construction projects). Great concern has arisen over the prediction of axially loaded jacked pile behavior. Against this background, a series of pile load tests were hence conducted on a jacked steel pipe pile installed in weathered zone (i.e., weathered soil and weathered rock). From the test results, base resistance and shaft resistance for each test condition were evaluated and compared with the values predicted by the previous driven pile resistance assessment method. Test results showed that the previous driven pile resistance assessment method highly underestimated both the base and shaft resistances of a jacked pile; differences were more obviously observed with the shaft resistance. The reason for this discrepancy is that a driven pile normally experiences a larger number of loading/unloading cycles during installation, and therefore shows significantly degraded stiffness of surrounding soil. Based on the results of the pile load tests, particular attention was given to the modification of the previous driven pile resistance assessment method for investigating the axially loaded jacked pile behavior.

Research on the ancient iron technology of Jungwon, the center of iron industry (제철산업의 중심 중원에서 고대 제철기술을 탐구하다)

  • Do, Eui Chul;Lee, Eun Woo;Seok, Je Seop;Jang, Min Seong
    • Korean Journal of Heritage: History & Science
    • /
    • v.48 no.1
    • /
    • pp.148-165
    • /
    • 2015
  • Iron was one of the most influential factors for formation and development of ancient countries. The diffusion of ironware had increased agricultural productivity and brought about military technical revolution. Needless to say, the rise and fall of the countries depended on the possession of stable iron production. Raw materials and fuels are the key factors for mass production of iron and a transportation route is essential to supply the goods. Jungwon area satisfies the three factors. There are many iron manufacture sites such as Jincheon Seokjang-ri Gusan-ri, and Chunju Chilgeum-dong Tangeumdae earthen ramparts in the Jungwon area. In order to study the ancient iron manufacture technique, reconstitution experiment was carried out using restored furnace which was made based on the Jincheon Seokjang-ri B-23 furnace. Some notable results were identified with the experiment as in the followings. Firstly, a roasting process has a connection with the decrease of hardness of the iron ore. Secondly, melting of the blast pipe as well as the formation of product within the furnace had a crucial effect on the cessation of the experiment. Thirdly, reduced iron in various locations within the furnace prove that there was enough reducing environment during the working. Not only melting point but also properties of iron can vary depending on the carbon contents. For the reason, formation of approximate environment in which iron can react to the chalcoal is the most important factor in terms of iron manufacture.

An experimental study on the influence of undular bore on the hydraulic stability at Shinwol rainwater storage and drainage system (불규칙 단파가 신월저류배수시설의 수리적 안정성에 미치는 영향에 대한 실험 연구)

  • Oh, Jun Oh
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.5
    • /
    • pp.313-323
    • /
    • 2019
  • Deep Tunnel system is a large-scale urban flood control facility installed underground in order to reinforce the lack of drainage systems in developed cities. In a structure like a deep tunnel system, the undular bore generated in the downstream causes a problem in the hydraulic stability of the tunnel. In this study, to investigate the influence of the undular bore on the hydraulic stability at the "Shinwol rainwater storage and drainage system", under construction for the first time in the country, a hydraulic model experiment was conducted on various flooding inflow scenarios. As a result of the hydraulic model experiment carried out in this study, the undular bore generated downstream is trapped in the pipe while moving to upstream, pushes the compressed air. It is judged that overflow occurred by choking the vertical drop shaft in the process when this compressed air is being exhaust through the upstream vertical drop shaft and blocking flood inflow. In addition, the analysis of velocity of undular bore shows that the undular bore transfers energy, and at this time, the pressure rose in the pipe and the velocity increment occurred of the undular bore. Further studies are needed to predict the size and velocity of undular bore, which plays an important role in the hydraulic stability of the tunnel in the deep tunnel system.

A Study on the Application of Composites to Pipe Support Clamps for the Light-weight LNGC (LNGC 경량화를 위한 파이프 지지용 클램프의 복합소재 적용 연구)

  • Bae, Kyong-Min;Yim, Yoon-Ji;Yoon, Sung-Won;Ha, Jong-Rok;Cho, Je-Hyoung
    • Composites Research
    • /
    • v.34 no.1
    • /
    • pp.8-15
    • /
    • 2021
  • In the shipbuilding and marine industry, as a technology for reducing the weight of parts to reduce energy and improve operational efficiency of ships is required, a method of applying fibers-reinforced composites which is high-strength lightweight materials, as part materials can be considered. In this study, the possibility of applying fibers-reinforced composites to the pipe support clamps was evaluated to reduce the weight of LNGC. The fibers-reinforced composites were manufactured using carbon fibers and glass fibers as reinforcing fibers. Through the computer simulation program, the properties of the reinforcing materials and the matrix materials of the composites were inversely calculated, and the performance prediction was performed according to the change in the properties of each fiber lamination pattern. In addition, the structural analysis of the clamps according to the thickness of the composites was performed through the finite element analysis program. As a result of the study, it was confirmed that attention is needed in selecting the thickness when applying the fibers-reinforced composites of the clamp for weight reduction. It is considered that it will be easy to change the shape of the structure and change the structure for weight reduction in future supplementary design.

The Development and its Application of Diagnostic Technique for Corrosion Defect of U-type Open Rack Vaporizer (개방형 U-type 기화기의 부식손상부 진단기법 개발 및 적용)

  • Jang S. Y.;Lee S. M.;Oh B. T.;Kho Y. T.
    • Journal of the Korean Institute of Gas
    • /
    • v.5 no.3 s.15
    • /
    • pp.45-50
    • /
    • 2001
  • Open rack vaporizer (ORV) has been used in liquefied natural gas (LNG) receiving terminal in order to vaporize LNG into natural gas (NG) by heat exchange with seawater The U-type ORV which had been operated with seawater for 14 years is one of the important utilities of the gas production and the weld part of tube connected with header_ pipe had experienced many corrosion problems. To elucidate the cause of corrosion at weld part of vaporizer tube, corrosion potentials were compared by parts. This study concerns on the measurement of corrosion pit depth using non-destructive method and the evaluation of stress distribution in an aspect of safety with finite element analysis. In order to confirm the reliability of galvanic corrosion between weld parts and base metal, the measurement of corrosion potential by parts was conducted for 20 minutes in 3.5$\%$(wt.) NaCl solution. Many non-destructive methods were tried to measure the remaining thickness of vaporizer tube at fields. For general corrosion, tangential radiography test was confirmed as an effective method. In case of a fine corrosion pit, the shape of corrosion pit was reproduced using surface replication method. From collected data, stress distributions were quantitatively evaluated with 2-dimensional finite element method and the diagnostic evaluation on internal pressure of the U-type vaporizer could be made.

  • PDF

Effects of the Remanent Magnetization on Detecting Signals in Magnetic Flux Leakage System (자기누설탐상시스템에서 배관의 잔류자화가 결함신호에 미치는 영향)

  • Seo, Kang;Jeong, Hyun-Won;Park, Gwan-Soo;Rho, Yong-Woo;Yoo, Hui-Ryong;Cho, Sung-Ho;Kim, Dong-Kyu
    • Journal of the Korean Magnetics Society
    • /
    • v.15 no.6
    • /
    • pp.325-331
    • /
    • 2005
  • The magnetic Hut leakage (MFL) type nondestructive testing (NDT) method is widely used to detect corrosion and defects, mechanical deformation of the underground gas pipelines. The object pipeline is magnetically saturated by the magnetic system with permanent magnet and yokes. Because of the strong magnetic field enough to saturate the pipe, there could be distortion of the sensing signals because of the magnetization of the pipeline itself, To detect the defects precisely, the sensing signals are need to be compensated to eliminate the distortions coming from the media hysteresis. In this paper, the magnetizations of the pipeline in MFL type NDT are analyzed by Preisach model and 3D FEM. The distortions of the sensing signals are analyzed.

A study on the optimization design of pulse air jet system to improve bag-filter performance (여과집진기의 탈진 성능 향상을 위한 충격 기류 분사 시스템 최적화 설계에 관한 연구)

  • Hong, Sung-Gil;Jung, Yu-Jin;Park, Ki-Woo;Jeong, Moon-Heon;Lim, Ki-Hyuk;Suh, Hye-Min;Shon, Byung-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.8
    • /
    • pp.3792-3799
    • /
    • 2012
  • The dedusting characteristics of pulse air jet type dedusting system which is widely applied in the industries were identified by utilizing the computational fluid dynamics (CFD) and the dedusting performance in modified shape of dedusting unit was compared in this study. The review on the dedusting air volume, air stream distribution and inflow velocity distribution on each shape of dedusting part showed that the case of installing the nozzle on the blow tube (Case-3) and the case of installing the double intaking tube to the venturi (Case-4 and Case-5) were more excellent than the structure (Case-1) which is widely applied in the field in its amplification effect on the air volume and extension of stream width. The specification of venturi was decided to apply the selected Case-5 for the option of the commercial back filter. It is considered that the dedusting air volume will be maintained in maximum in the case of 50 mm and 90 mm for the diameter of internal and external intaking pipe respectively.

Determination of proper ground motion prediction equation for reasonable evaluation of the seismic reliability in the water supply systems (상수도 시스템 지진 신뢰성의 합리적 평가를 위한 적정 지반운동예측식 결정)

  • Choi, Jeongwook;Kang, Doosun;Jung, Donghwi;Lee, Chanwook;Yoo, Do Guen;Jo, Seong-Bae
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.9
    • /
    • pp.661-670
    • /
    • 2020
  • The water supply system has a wider installation range and various components of it than other infrastructure, making it difficult to secure stability against earthquakes. Therefore, it is necessary to develop methods for evaluating the seismic performance of water supply systems. Ground Motion Prediction Equation (GMPE) is used to evaluate the seismic performance (e.g, failure probability) for water supply facilities such as pump, water tank, and pipes. GMPE is calculated considering the independent variables such as the magnitude of the earthquake and the ground motion such as PGV (Peak Ground Velocity) and PGA (Peak Ground Acceleration). Since the large magnitude earthquake data has not accumulated much to date in Korea, this study tried to select a suitable GMPE for the domestic earthquake simulation by using the earthquake data measured in Korea. To this end, GMPE formula is calculated based on the existing domestic earthquake and presented the results. In the future, it is expected that the evaluation will be more appropriate if the determined GMPE is used when evaluating the seismic performance of domestic waterworks. Appropriate GMPE can be directly used to evaluate hydraulic seismic performance of water supply networks. In other words, it is possible to quantify the damage rate of a pipeline during an earthquake through linkage with the pipe failure probability model, and it is possible to derive more reasonable results when estimating the water outage or low-pressure area due to pipe damages. Finally, the quantifying result of the seismic performance can be used as a design criteria for preparing an optimal restoration plan and proactive seismic design of pipe networks to minimize the damage in the event of an earthquake.

A study on the simulation method for the flushing flowrate and velocity in the watermain using a hydrant and a drain valve (소화전과 이토변을 이용한 플러싱 적용 시 관 내 세척유량과 유속 모의 방안에 관한 연구)

  • Gim, ARin;Lee, Eunhwan;Lee, SongI;Kim, kwang hyun;Jun, Hwandon
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.spc1
    • /
    • pp.1251-1260
    • /
    • 2022
  • Recently, due to the deterioration of watermains and the detachment of scale which is accumulated on the watermain surface, water quality accidents in a water supply network occur frequently. As scale accumulated on watermains is stabilized, it may not cause water quality accidents under the normal operating condition. However, due to water hammer or transient flow caused by the abrupt velocity and/or direction of flow change, it can be detached from the watermain surface resulting in water quality accidents. To prevent these kinds of water quality accidents, it is required to remove scale by watermain cleaning regularly. Many researches about flushing which is the most popular water cleaning method are focused on the desirable velocity criteria and the cleaning condition to accomplish the effect of flushing whereas less amount of research effort is given to develop a method to consider whether the desirable velocity for flushing can be obtained before flushing is performed. During flushing, the major and minor headloss is occurred when flushing water flows through a hydrant or drain valve. These headloss may slow down the velocity of flushing water so that it can reduce the flushing effect. Thus, in this study, we suggest a method to simulate the flow velocity of flushing water using "MinorLoss Coefficient" and "Emitter Coefficient" in EPANET. The suggested method is applied to a sample network and the water supply network of "A" city in Korea to compare the flushing effect between "flushing through a hydrant" and "flushing through a drain valve". In case of "flushing through a hydrant", if the hydraulic condition ocurring from a watermain pipe connecting to the inlet pipe of a hydrant to the outlet of a hydrant is not considered, the actual flowrate and velocity of a flow is less than the simulated flowrate and velocity of a flow. In case of "flushing through a drain valve", the flushing velocity and flowrate can be easily simulated and the difference between the simulated and the actual velocity and flowrate is not significant. Also, "flushing through a drain valve" is very effective to flushing a long-length pipe section because of its efficiency to obtain the flushing velocity. However, the number and location of a drain valve is limited compared to a hydrant so that "flushing through a drain valve" has a limited application in the field. For this reason, the engineer should consider various field conditions to come up with a proper flushing plan.

Development of the computer program calculating the stress induced by various loads for buried natural gas pipeline ( I ) (매설 천연가스 배관의 제반하중에 의한 응력 계산용 프로그램 개발 (I))

  • Bang I.W.;Kim H.S.;Kim W.S.;Yang Y.C.;Oh K.W.
    • Journal of the Korean Institute of Gas
    • /
    • v.2 no.2
    • /
    • pp.18-25
    • /
    • 1998
  • According to the requirements of ANSI B3l.8, the pipe thickness is determined with hoop stress resulted from internal pressure. And the other loads induced by soil, vehicle, thermal expansion, ground subsidence, etc shall be evaluated rationally. There are two ways of calculating stress of buried gas pipeline. The first is FEM. FEM can calculate the stress regardless of the complexity of pipeline shape and boundary conditions. But it needs high cost and long time. The second is the way to use equation. The reliable equations to calculate the stress of buried gas pipeline was developed and have been used in designing pipeline and evaluating pipeline safety, But these equation are very difficult to understand and use for non-specialist. For easy calculation of non-specialist, the new computer program to calculate stress of buried natural gas pipeline have been developed. The stress is calculated by the equations and extrapolation of the graph resulted from FEM. The full paper is consist of series I and II. In this paper, series I, the calculating equation of the program is explained in detail.

  • PDF