• Title/Summary/Keyword: center in Seoul

Search Result 11,613, Processing Time 0.049 seconds

Purification and Characterization of Cyclodextrin Glucanotransferase from Bacillus sp. El (Bacillus sp. E1이 생성하는 Cyclodextrin Glucanotransferase의 정제 및 특성)

  • Park, Cheon-Seok;Woo, Eui-Jeon;Kuk, Seung-Uk;Seo, Byung-Cheol;Park, Kwan-Hwa;Lim, Hoon
    • Microbiology and Biotechnology Letters
    • /
    • v.20 no.2
    • /
    • pp.156-163
    • /
    • 1992
  • Bacillus sp. was isolated from soil for its strong activity of cyclodextrin glucanotransferase (CGTase, EC 2.4.1.19). The enzyme was purified by gel filtration and anion exchange column chromatography using FPLC. The purified enzyme exhibited its maximum CGTase activity in the pH range of 6~8 and the temperature range of 50~$70^{\circ}C$. The molecular weight was estimated as 114,000 by SDS-PAGE. The isoelectric point of the enzyme was 4.3. The CGTase of Bacillus sp. E l produced $\beta$-cyclodextrin mainly and did not produce a-cyclodextrin. The product ratio of $\beta$-cyclodextrin to $\gamma$-cyclodextrin was 7:l.

  • PDF

Enhanced Microbial, Functional and Sensory Properties of Herbal Yogurt Fermented with Korean Traditional Plant Extracts

  • Joung, Jae Yeon;Lee, Ji Young;Ha, Young Sik;Shin, Yong Kook;Kim, Younghoon;Kim, Sae Hun;Oh, Nam Su
    • Food Science of Animal Resources
    • /
    • v.36 no.1
    • /
    • pp.90-99
    • /
    • 2016
  • This study evaluated the effects of two Korean traditional plant extracts (Diospyros kaki THUNB. leaf; DK, and Nelumbo nucifera leaf; NN) on the fermentation, functional and sensory properties of herbal yogurts. Compared to control fermentation, all plant extracts increased acidification rate and reduced the time to complete fermentation (pH 4.5). Supplementation of plant extracts and storage time were found to influence the characteristics of the yogurts, contributing to increased viability of starter culture and phenolic compounds. In particular, the increase in the counts of Streptococcus thermophilus and Lactobacillus delbrueckii subsp. bulgaricus was highest (2.95 and 1.14 Log CFU/mL respectively) in DK yogurt. Furthermore, supplementation of the plant extracts significantly influenced to increase the antioxidant activity and water holding capacity and to produce volatile compounds. The higher antioxidant activity and water holding capacity were observed in NN yogurt than DK yogurt. Moreover, all of the sensory characteristics were altered by the addition of plant extracts. Addition of plant extracts increased the scores related to flavor, taste, and texture from plain yogurt without a plant extract, as a result of volatile compounds analysis. Thus, the overall preference was increased by plant extracts. Consequently, supplementation of DK and NN extracts in yogurt enhanced the antioxidant activity and physical property, moreover increased the acceptability of yogurt. These findings demonstrate the possibility of using plant extracts as a functional ingredient in the manufacture of herbal yogurt.

Profiling Patterns of Volatile Organic Compounds in Intact, Senescent, and Litter Red Pine (Pinus densiflora Sieb. et Zucc.) Needles in Winter

  • CHOI, Won-Sil;YANG, Seung-Ok;LEE, Ji-Hyun;CHOI, Eun-Ji;KIM, Yun-Hee;YANG, Jiyoon;PARK, Mi-Jin
    • Journal of the Korean Wood Science and Technology
    • /
    • v.48 no.5
    • /
    • pp.591-607
    • /
    • 2020
  • This study was aimed to investigate the changes of chemical composition of the volatile organic compounds (VOCs) emitted from red pine needles in the process of needle abscission or senescence. The VOCs in intact, senescent, and litter red pine needle samples were analyzed by headspace-solid phase microextraction gas chromatography-mass spectrometry (HS-SPME-GC/MS). And then, multivariate statistical interpretation of the processed data sets was conducted to investigate similarities and dissimilarities of the needle samples. Principal component analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA) were used to investigate the dataset structure and discrimination between samples, respectively. From the data preview, the levels of major components of VOCs from needles were not significantly different between needle samples. By PCA investigation, the data reduction according to classification based on the chlorophyll a / chlorophyll b (Ca/Cb) ratio were found to be ideal for differentiating intact, senescent, and litter needles. The following OPLS-DA taking Ca/Cb ratio as y-variables showed that needle samples were well grouped on score plot and had the significant discriminant compounds, respectively. Several compounds had significantly correlated with Ca/Cb ratio in a bivariate correlation analysis. Notably, the litter needles had a higher content of oxidized compounds than the intact needles. In summary, we found that chemical compositions of VOCs between intact, senescent, and litter needles are different each other and several compounds reflect characteristic of needle.

Effect of Temperature on Embryonation of Ascaris suum Eggs in an Environmental Chamber

  • Kim, Min-Ki;Pyo, Kyoung-Ho;Hwang, Young-Sang;Park, Ki-Hwan;Hwang, In-Gyun;Chai, Jong-Yil;Shin, Eun-Hee
    • Parasites, Hosts and Diseases
    • /
    • v.50 no.3
    • /
    • pp.239-242
    • /
    • 2012
  • The influence of temperature on the development and embryonation of Ascaris suum eggs was studied using coarse sand medium in an environmental chamber with 50% humidity. The time required for development and embryonation of eggs was examined under 3 different temperature conditions, $5^{\circ}C$, $25^{\circ}C$, and $35^{\circ}C$. A. suum eggs did not develop over 1 month at the temperature of $5^{\circ}C$. However, other temperature conditions, $25^{\circ}C$ and $35^{\circ}C$, induced egg development to the 8-cell-stage at days 5-6 after incubation. All eggs examined developed to the 8-cell stage at day 6 after incubation in the sand medium at $25^{\circ}C$. The higher temperature, $35^{\circ}C$, slightly accelerated the A. suum egg development compared to $25^{\circ}C$, and the development to the 8-cell stage occurred within day 5 after incubation. The formation of larvae in A. suum eggs at temperatures of $35^{\circ}C$ and $25^{\circ}C$ appeared at days 17 and 19 after incubation, respectively. These findings show that $35^{\circ}C$ condition shortens the time for the development of A. suum eggs to the 8-cell-stage in comparison to $25^{\circ}C$, and suggest the possibility of accelerated transmission of this parasite, resulting from global warming and ecosystem changes.

Preventive effects of nano-graphene oxide against Parkinson's disease via reactive oxygen species scavenging and anti-inflammation

  • Hee-Yeong Kim;Hyung Ho Yoon;Hanyu Seong;Dong Kwang Seo;Soon Won Choi;Jaechul Ryu;Kyung-Sun Kang;Sang Ryong Jeon
    • BMB Reports
    • /
    • v.56 no.3
    • /
    • pp.202-207
    • /
    • 2023
  • We investigated the neuroprotective effects of deca nano-graphene oxide (daNGO) against reactive oxygen species (ROS) and inflammation in the human neuroblastoma cell line SH-SY5Y and in the 6-hydroxydopamine (6-OHDA) induced Parkinsonian rat model. An MTT assay was performed to measure cell viability in vitro in the presence of 6-OHDA and/or daNGO. The intracellular ROS level was quantified using 2',7'-dichlorofluorescein diacetate. daNGO showed neuroprotective effects against 6-OHDA-induced toxicity and also displayed ROS scavenging properties. We then tested the protective effects of daNGO against 6-OHDA induced toxicity in a rat model. Stepping tests showed that the akinesia symptoms were improved in the daNGO group compared to the control group. Moreover, in an apomorphine-induced rotation test, the number of net contralateral rotations was decreased in the daNGO group compared to the control group. By immunofluorescent staining, the animals in the daNGO group had more tyrosine hydroxylase-positive cells than the controls. By anti-Iba1 staining, 6-OHDA induced microglial activation showed a significantly decrease in the daNGO group, indicating that the neuroprotective effects of graphene resulted from anti-inflammation. In conclusion, nano-graphene oxide has neuroprotective effects against the neurotoxin induced by 6-OHDA on dopaminergic neurons.

Effect of FK506 and Cyclosporin A on $I{\kappa}B{\alpha}$ Degradation and $IKK{\alpha}$ Pathway in Bronchial Epithelial Cells, Monocytes, Lymphocytes and Alveolar Macrophages (FK506과 cyclosporin A가 기관지상피세포, 단핵구, 림프구 및 폐포대식세포에서 $I{\kappa}B{\alpha}$ 분해 및 $IKK{\alpha}$ 활성에 미치는 효과)

  • Yoon, Ho Il;Lee, Chang-Hoon;Lee, Hee-Seok;Lee, Choon-Taek;Kim, Young Whan;Han, Sung Koo;Shim, Young-Soo;Yoo, Chul-Gyu
    • Tuberculosis and Respiratory Diseases
    • /
    • v.54 no.4
    • /
    • pp.449-458
    • /
    • 2003
  • Background : Cyclosporin A(CsA) and tacrolimus(FK506) have been widely used as immunosuppressants. The effects of CsA, or FK506, on the $I{\kappa}B/NF-{\kappa}B$ pathway have been shown to vary according to the cell type. However, their effects on the $I{\kappa}B/NF-{\kappa}B$ pathway have not been reported in bronchial epithelial cells. In this study, the effects of CsA and FK506 on the $I{\kappa}B/NF-{\kappa}B$ pathway in bronchial epithelial cells, monocytes, lymphocytes and alveolar macrophages were evaluated. The relationship between their effects on the $I{\kappa}B/NF-{\kappa}B$ pathway and $I{\kappa}B$ kinase(IKK) activity was also investigated. Methods : BEAS-2B and A549 cells, pulmonary alveolar macrophages, peripheral blood monocytes and lymphocytes were used. The cells were pre-treated with CsA, or FK506, for various time periods, followed by stimulation with TNF-${\alpha}$, LPS or IL-$1{\beta}$. The $I{\kappa}B{\alpha}$ expressions were assayed by Western blot analyses. The IKK activity was evaluated by an in vitro immune complex kinase assay, using GST-$I{\kappa}B{\alpha}$ as the substrate. Results : Neither CsA nor FK506 affected the level of $I{\kappa}B{\alpha}$ expression in any of the cell types used in this study. CsA pre-treatment inhibited the TNF ${\alpha}$-induced $I{\kappa}B{\alpha}$ degradation in bronchial epithelial cells. In contrast, the TNF ${\alpha}$-induced $I{\kappa}B{\alpha}$ degradation was not affected by FK506 pre-treatment. However, FK506 suppressed the cytokine-induced $I{\kappa}B{\alpha}$ degradation in the pulmonary alveolar macrophages, peripheral blood monocytes and lymphocytes. The inhibitory effect of CsA, or FK506, on $I{\kappa}B{\alpha}$ degradation was not related to IKK. Conclusions : CsA and FK506 suppressed the $I{\kappa}B{\alpha}$ degradation in bronchial epithelial cells, monocytes, lymphocytes and alveolar macrophages, so this may not be mediated through IKK.

A Risk Prediction Model for Operative Mortality after Heart Valve Surgery in a Korean Cohort

  • Kim, Ho Jin;Kim, Joon Bum;Kim, Seon-Ok;Yun, Sung-Cheol;Lee, Sak;Lim, Cheong;Choi, Jae Woong;Hwang, Ho Young;Kim, Kyung Hwan;Lee, Seung Hyun;Yoo, Jae Suk;Sung, Kiick;Je, Hyung Gon;Hong, Soon Chang;Kim, Yun Jung;Kim, Sung-Hyun;Chang, Byung-Chul
    • Journal of Chest Surgery
    • /
    • v.54 no.2
    • /
    • pp.88-98
    • /
    • 2021
  • Background: This study aimed to develop a new risk prediction model for operative mortality in a Korean cohort undergoing heart valve surgery using the Korea Heart Valve Surgery Registry (KHVSR) database. Methods: We analyzed data from 4,742 patients registered in the KHVSR who underwent heart valve surgery at 9 institutions between 2017 and 2018. A risk prediction model was developed for operative mortality, defined as death within 30 days after surgery or during the same hospitalization. A statistical model was generated with a scoring system by multiple logistic regression analyses. The performance of the model was evaluated by its discrimination and calibration abilities. Results: Operative mortality occurred in 142 patients. The final regression models identified 13 risk variables. The risk prediction model showed good discrimination, with a c-statistic of 0.805 and calibration with Hosmer-Lemeshow goodness-of-fit p-value of 0.630. The risk scores ranged from -1 to 15, and were associated with an increase in predicted mortality. The predicted mortality across the risk scores ranged from 0.3% to 80.6%. Conclusion: This risk prediction model using a scoring system specific to heart valve surgery was developed from the KHVSR database. The risk prediction model showed that operative mortality could be predicted well in a Korean cohort.

Nicotinamide as a therapeutic agent for bone diseases

  • Heein Yoon;Woo-Jin Kim;Young-Dan Cho;Hyun-Mo Ryoo
    • International Journal of Oral Biology
    • /
    • v.49 no.3
    • /
    • pp.53-60
    • /
    • 2024
  • Nicotinamide (NAM), a water-soluble derivative of vitamin B3, has emerged as a potential therapeutic agent for bone-related disorders. In particular, it promotes bone metabolism and alleviates delayed tooth eruptions associated with cleidocranial dysplasia (CCD). NAM serves as a precursor for nicotinamide adenine dinucleotide, a key coenzyme involved in cellular metabolism that plays an essential role in oxidative phosphorylation and mitochondrial function. Recent research has highlighted the capacity of NAM to enhance osteogenic differentiation and regulate the interaction between osteoblasts and osteoclasts, which is critical for maintaining bone homeostasis. Moreover, the effect of NAM in preventing delayed tooth eruptions in CCD models underscores its potential as a noninvasive therapeutic option. Considering its safety profile and therapeutic potential, NAM is a promising candidate for long-term treatment of bone diseases and prevention of age-related bone disorders.

Carnosine and Retinol Synergistically Inhibit UVB-Induced PGE2 Synthesis in Human Keratinocytes through the Up-Regulation of Hyaluronan Synthase 2

  • In Guk Park;Sun Hee Jin;Seungchan An;Min Won Ki;Won Seok Park;Hyoung-June Kim;Yongjoo Na;Minsoo Noh
    • Biomolecules & Therapeutics
    • /
    • v.32 no.5
    • /
    • pp.635-639
    • /
    • 2024
  • Skin aging results from complex interactions of intrinsic and extrinsic factors, leading to structural and biochemical changes such as wrinkles and dryness. Ultraviolet (UV) irradiation leads to the degradation of hyaluronic acid (HA) in the skin, and the fragmented HA contributes to inflammation. This study revealed that the synergistic combination of carnosine and retinol (ROL) increases HA production in normal human epidermal keratinocytes (NHEKs) by upregulating hyaluronan synthase 2 (HAS2) gene transcription. Simultaneously, the combined treatment of carnosine and ROL significantly attenuates UVB-induced prostaglandin E2 (PGE2) synthesis in NHEKs. A significant correlation exists between the increase of HA synthesis and the inhibition of PGE2 production. This study suggests that combined treatment of carnosine and ROL can improve skin aging phenotypes associated with UVB irradiation.