• Title/Summary/Keyword: center column load

Search Result 102, Processing Time 0.026 seconds

Comparison on the Failure Mechanism of Punching Shear in the Reinforced Concrete (철근 콘크리트의 뚫림전단 파괴메카니즘에 과한 비교)

  • 이주나;연규원;이호준;박찬수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.533-538
    • /
    • 2000
  • In R.C. flat slab system, a brittle punching failure is a very fatal problem. But there is no generally well-defined answer to the problem and there are wide differences in current practical design codes. therefore, in this study, the factors affecting to punching failure mechanism have been studied to find out the punching shear behavior in R.C. flat slabs by comparing other investigations and practical design codes. Therefore, In this study, the factors affecting to punching failure mechanism have been studied to find out the punching shear behavior in R.C. flat slabs by comparing other investigations and practical design codes. The conclusions in this study are summarized as follows; 1) The factors affecting to punching shear are concrete strength ($f_\alpha$), ratio of column side length to slab depth (c/d), ratio of distance from column center to radial contraflexure (l/d), yield strength of steel ($f_y$), flexural reinforcement ratio ($\rho$) and size effects. 2) It is shown that th use of $\surd{f_{ck}}$in applying($f_\alpha$ to punching shear strength estimation may be more sensitive in high concrete strength. 3) The effects of l/d, ($f_y$, size are no clear in the punching failure mechanism, so in the future, it should be investigated with the effects of various composed load.

  • PDF

A Scalable Heuristic for Pickup-and-Delivery of Splittable Loads and Its Application to Military Cargo-Plane Routing

  • Park, Myoung-Ju;Lee, Moon-Gul
    • Management Science and Financial Engineering
    • /
    • v.18 no.1
    • /
    • pp.27-37
    • /
    • 2012
  • This paper is motivated by a military cargo-plane routing problem which is a pickup-and-delivery problem in which load splits and node revisits are allowed (PDPLS). Although this recent evolution of a VRP-model enhances the efficiency of routing, a solution method is more of a challenge since the node revisits entail closed walks in modeling vehicle routes. For such a case, even a compact IP-formulation is not available and an effective method had been lacking until Nowak et al. (2008b) proposed a heuristic based on a tabu search. Their method provides very reasonable solu-tions as demonstrated by the experiments not only in their paper (Nowak et al., 2008b) but also in ours. However, the computation time seems intensive especially for the class of problems with dynamic transportation requests, including the military cargo-plane routing problem. This paper proposes a more scalable algorithm hybridizing a tabu search for pricing subproblem paused as a single-vehicle routing problem, with a column generation approach based on Dantzig-Wolfe decomposition. As tested on a wide variety of instances, our algorithm produces, in average, a solution of an equiva-lent quality in 10~20% of the computation time of the previous method.

Dynamic Response Analysis of Twisted High-Rise Structures according to the Core Location Change (코어 위치 변화에 따른 비틀림 초고층 구조물의 동적응답분석)

  • Chae, Young-Won;Kim, Hyun-Su;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.22 no.1
    • /
    • pp.17-24
    • /
    • 2022
  • Currently, the construction trend of high-rise structures is changing from a cube-shaped box to a free-form. In the case of free-form structures, it is difficult to predict the behavior of the structure because it induces torsional deformation due to inclined columns and the eccentricity of the structure by the horizontal load. For this reason, it is essential to review the stability by considering the design variables at the design stage. In this paper, the position of the weak vertical member was analyzed by analyzing the behavior of the structure according to the change in the core position of the twisted high-rise structures. In the case of the shear wall, the shear force was found to be high in the order of proximity to the center of gravity of each floor of the structure. In the case of the column, the component force was generated by the axial force of the outermost beam, so the bending moment was concentrated on the inner column with no inclination.

Seismic Performance of Hollow Rectangular Precast Segmental Piers (프리캐스트 중공 사각형 철근콘크리트 교각의 내진성능)

  • Lee, Jae-Hoon;Park, Dong-Kyu;Choi, Jin-Ho;Shin, Sung-Jin
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.6
    • /
    • pp.705-714
    • /
    • 2012
  • Precast reinforced concrete bridge columns with hollow rectangular section were tested under cyclic lateral load with constant axial force to investigate its seismic performance. After all the precast column segments were erected, longitudinal reinforcement was inserted in the sheath prefabricated in the segments, which were then mortar grouted. Main variables of the test series were column aspect ratio, longitudinal reinforcement ratio, amount of lateral reinforcement, and location of segment joints. The aspect ratios were 4.5 and 2.5, and the longitudinal steel ratios were 1.15% and 3.07%. The amount of lateral reinforcement were 95%, 55%, 50%, and 27% of the minimum amount for full ductility design requirements in the Korean Bridge Design Code. The locations of segment joints in plastic hinge region were 0.5 and 1.0 times of the section depth from the bottom column end. The test results of cracking and failure mode, axial-flexural strength, lateral load-displacement relationship, and displacement ductility are presented. Then, safety of the ductility demand based seismic design in the Korean Bridge Design Code is discussed. The column specimens showed larger ductility than expected, because buckling of longitudinal reinforcing bar was prevented due to confinement developed not only by transverse steel but also by sheath and infilling mortar.

Application of Headed Bars with Small Head in Exterior Beam-Column Joints Subjected to Reversed Cyclic Loads (반복하중을 받는 외부 보-기둥 접합부에서 작은 헤드를 사용한 Headed Bar적용)

  • Ha, Sang-Su;Choi, Dong-Uk;Lee, Chang-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.4
    • /
    • pp.411-420
    • /
    • 2007
  • The applicability of headed bars in exterior beam-column joints under reversed cyclic loading was investigated. A total of ten pullout tests were first performed to examine pullout behavior of headed bars subjected to monotonic and cyclic loading with test variables such as connection type between head and bar stem (weld or no weld), loading methods (monotonic or cyclic loading), and head shape (small or large circular head and square head). Two full-scale beam-column joint tests were then performed to compare the structural behavior of exterior beam-column joints constructed using two different reinforcement details: i.e. $90^{\circ}$ standard hooks and headed bars. Both joints were designed following the recommendations of ACI-ASCE Committee 352 for Type 2 performance: i.e. the connection is required to dissipate energy through reversals of deformation into inelastic range. The pullout test results revealed that welded head to the stem did not necessarily result in increased pullout strength when compared to non-welded head. Relatively large circular head resulted in higher peak load than smaller circular and square head. Both beam-column joints with conventional $90^{\circ}$ hooks and headed bars behaved similarly in terms of crack development, hysteresis curves, and peak strengths. The joint using the headed bars showed better overall structural performance in terms of ductility, deformation capacity, and energy dissipation. These experimental results demonstrate that the headed bars using relatively small head can be properly designed far use in external beam-column joint.

Finite Element Analysis Study of CJS Composite Structural System with CFT Columns and Composite Beams (CFT기둥과 합성보로 구성된 CJS합성구조시스템의 유한요소해석 연구)

  • Moon, A Hae;Shin, Jiuk;Lim, Chang Gue;Lee, Kihak
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.26 no.2
    • /
    • pp.71-82
    • /
    • 2022
  • This paper presents the effect on the inelastic behavior and structural performance of concrete and filled steel pipe through a numerical method for reliable judgment under various load conditions of the CJS composite structural system. Variable values optimized for the CJS synthetic structural system and the effects of multiple variables used for finite element analysis to present analytical modeling were compared and analyzed with experimental results. The Winfrith concrete model was used as a concrete material model that describes the confinement effect well, and the concrete structure was modeled with solid elements. Through geometric analysis of shell and solid elements, rectangular steel pipe columns and steel elements were modeled as shell elements. In addition, the slip behavior of the joint between the concrete column and the rectangular steel pipe was described using the Surface-to-Surface function. After finite element analysis modeling, simulation was performed for cyclic loading after assuming that the lower part of the foundation was a pin in the same way as in the experiment. The analysis model was verified by comparing the calculated analysis results with the experimental results, focusing on initial stiffness, maximum strength, and energy dissipation capability.

Development of a Temporary Pole Supporting System to Protect the Plastic Greenhouses from Heavy Snow Damage (플라스틱 온실의 폭설피해 방지를 위한 가지주 장치 개발)

  • Nam, Sang-Woon
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.44 no.4
    • /
    • pp.107-113
    • /
    • 2002
  • The pipe framed and arch shape plastic greenhouse, which is the most popular greenhouse in Korea, is relatively weak in snowdrift. Reinforcement of rigid frame or column is required to reduce the damage from heavy snow in this type. But additional rigid frames or columns decrease light transmissivity or workability, and increase construction cost. So it is desirable to prepare some temporary poles and to install them when the warning of heavy snow is announced. This study was carried out to develop the temporary pole supporting system using galvanized steel pipes for plastic housing and to evaluate the safe snow load on a temporary pole. A pipe connector, which is inserted in the top of pipe used in the temporary pole and supports the center purline, was designed and manufactured to be able to carry the upper loads safely. And a bearing plate was safely designed and manufactured in order to carry the loads acting on it to the ground. When temporary poles of ${\phi}$ 25 pipe are installed at 2.4m interval, it shows that the single span plastic greenhouses with 5~7 m width are able to support the additional snow depth of 13.9~25.3 cm beyond the snow load supported by main frame.

Determination of Equivalent Vehicle Load Factors for Flat Slab Parking Structures Using Artificial Neural Networks (인공 신경망을 이용한 플랫 슬래브 주차장 구조물의 등가차량하중계수)

  • 곽효경;송종영
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.16 no.2
    • /
    • pp.115-124
    • /
    • 2003
  • In this paper, the effects of vehicle loads on flat slab system are investigated on the basis of the previous studies for beam-gilder parking structural system. The influence surfaces of flat slab for a typical design section are constructed lot the purpose of obtaining maximum member forces under vehicle loads. In addition, the equivalent vehicle load factors for flat slab parking structures are suggested using artificial neural network. The network responses we compared with the results obtained by numerical analyses to verify the validation of Levenberg-Marquardt algorithm adopted as training method in this Paper. Many parameter studies for the flat slab structural system show dominant vehicle load effects at the center positive moments in both column and middle strips, like the beam-girder parking structural system.

Examination of three meta-heuristic algorithms for optimal design of planar steel frames

  • Tejani, Ghanshyam G.;Bhensdadia, Vishwesh H.;Bureerat, Sujin
    • Advances in Computational Design
    • /
    • v.1 no.1
    • /
    • pp.79-86
    • /
    • 2016
  • In this study, the three different meta-heuristics namely the Grey Wolf Optimizer (GWO), Stochastic Fractal Search (SFS), and Adaptive Differential Evolution with Optional External Archive (JADE) algorithms are examined. This study considers optimization of the planer frame to minimize its weight subjected to the strength and displacement constraints as per the American Institute of Steel and Construction - Load and Resistance Factor Design (AISC-LRFD). The GWO algorithm is associated with grey wolves' activities in the social hierarchy. The SFS algorithm works on the natural phenomenon of growth. JADE on the other hand is a powerful self-adaptive version of a differential evolution algorithm. A one-bay ten-story planar steel frame problem is examined in the present work to investigate the design ability of the proposed algorithms. The frame design is produced by optimizing the W-shaped cross sections of beam and column members as per AISC-LRFD standard steel sections. The results of the algorithms are compared. In addition, these results are also mapped with other state-of-art algorithms.

Shake Table Tests for the Evaluation of Seismic Behavior of SRC Piers (SRC 교각의 내진거동 평가를 위한 진동대 실험)

  • Shim, Chang-Su;Chung, Young-Soo;Han, Jung-Hoon;Park, Ji-Ho;Jeon, Seung-Min
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.305-308
    • /
    • 2006
  • In this paper, the seismic performance of SRC piers for near fault motions was evaluated by shaking table tests on small scale models. Dead load of the superstructures was simulated by axial prestress at the center of the column section. A mass frame linked with steel bars was fabricated to include the effect of superstructure mass. Friction of the mass frame when it moves was minimized by special details and it was proved before tests. Five pier models with 400mm diameter were tested by increasing the acceleration of the near fault motion. Test results were discussed and compared with previous quasi-static tests.

  • PDF