• Title/Summary/Keyword: center column load

Search Result 102, Processing Time 0.022 seconds

The Spatial and Vertical Variations of Metal Pollution in Sediments after Tidal Power Plant Operation in Shihwa Lake (시화호 조력발전소 가동으로 인한 퇴적물 내 중금속 오염 특성 변화)

  • LEE, JIHYUN;JEONG, HYERYEONG;CHOI, JIN YOUNG;RA, KONGTAE
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.24 no.4
    • /
    • pp.535-547
    • /
    • 2019
  • In this study, the heavy metal analysis in sediments (surface sediments, sediments cores and settling particles) from Shihwa Lake has been carried out to evaluate the changes of metal pollution levels in sediments after the operation of Tidal Power Plant (TPP). The average concentrations of metals in surface sediments sampled in 2015 were 8% (Cd)~31% (Zn, Hg) lower than in 2009 before TPP operation. Results of calculating the pollution load index (PLI) with 8 metals, the PLI value in 2015 showed a 18% decrease compared to 2009. However, Cu, Zn, Pb concentrations of surface sediments in 2015 at the upper region around industrial complex still exceeded the TEL (threshold effect level) values for sediment quality guideline in Korea. After the operation of TPP, the metal contaminated depths were increasing from 15 cm to 30 cm at S6 site and from 8 cm to 20 cm at S7 site, respectively. Our data showed that the mean concentration of heavy metals in core samples decreased but the contaminated depth increased. The average of the total sedimentation flux for particulate matter increased by 3.2 times from 32.5 g/㎡/d in 2009 to 103.5 g/㎡/d in 2015. This showed that the bottom sediments were resuspended by the operation of TPP, resulting in an increase of particulate matter in the water column. These results suggest that the sediments contaminated with heavy metals seem to be resuspended and relocated due to the water current caused by the operation of TPP. Cr, Cu, Zn, Pb and Cd were highly exceeding the TEL values in the upstream region and accumulated more than 40 cm of sediment depth, indicating that heavy metal contamination through industrial activity were still a serious environmental problem of Shihwa Lake. Although the metal pollution of Shihwa Lake has been slightly reduced, the contaminated sediments with heavy metals inside of Shihwa Lake might be discharged to outer sea after the resuspension by TPP operation. It is necessary for the advanced scientific approach and political decision to drastically reduce the heavy metal pollution of the study region.

Phytoplankton Variability in Response to Glacier Retreat in Marian Cove, King George Island, Antarctica in 2021-2022 Summer (하계 마리안 소만 빙하후퇴에 따른 식물플랑크톤 변동성 분석)

  • Chorom Shim;Jun-Oh Min;Boyeon Lee;Seo-Yeon Hong;Sun-Yong Ha
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.5
    • /
    • pp.417-426
    • /
    • 2023
  • Rapid climate change has resulted in glacial retreat and increased meltwater inputs in the Antarctic Peninsula, including King George Island where Marian Cove is located. Consequently, these phenomena are expected to induce changes in the water column light properties, which in turn will affect phytoplankton communities. To comprehend the effects of glacial retreat on the marine ecosystem in Marian Cove, we investigated on phytoplankton biomass (chlorophyll-a, chl-a) and various environment parameters in this area in December 2021 and January 2022. The average temperature at the euphotic depth in January 2022 (1.41 ± 0.13 ℃) was higher than that in December 2021 (0.87 ± 0.17 ℃). Contrastingly, the average salinity was lower in January 2022 (33.9 ± 0.10 psu) than in December 2021 (34.1 ± 0.12 psu). Major nutrients, including dissolved inorganic nitrogen, phosphate, and silicate, were sufficiently high, and thus, did not act as limiting factors for phytoplankton biomass. In December 2021 and January 2022, the mean chl-a concentrations were 1.03 ± 0.64 and 0.66 ± 0.15㎍ L-1, respectively. The mean concentration of suspended particulate matter (SPM) was 24.9 ± 3.54 mgL-1 during the study period, with elevated values observed in the vicinity of the inner glacier. However, relative lower chl-a concentrations were observed near the inner glacier, possibly due to high SPM load from the glacier, resulting in reduced light attenuation by SPM shading. Furthermore, the proportion of nanophytoplankton exceeded 70% in the inner cove, contributing to elevated mean fractions of nanophytoplankton in the glacier retreat marine ecosystem. Overall, our study indicated that freshwater and SPM inputs from glacial meltwater may possibly act as main factors controlling the dynamics of phytoplankton communities in glacier retreat areas. The findings may also serve as fundamental data for better understanding the carbon cycle in Marian Cove.