• 제목/요약/키워드: cementitious binders

검색결과 18건 처리시간 0.023초

The applicability of Freundlich's isotherm model for the leaching of solidified hazardous waste using cementitious binders

  • Youn Jong Ho;Lee Heon Mo;Jeong Byung Gon;Chung Yong Hyun
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • 제2권1호
    • /
    • pp.9-19
    • /
    • 1998
  • A laboratory study was conducted to investigate the immobilization of the laboratory waste sludge, mainly from chemical oxygen demand (COD) waste, using cementitious binders. The binders were: Ordinary Portland Cement (OPC), and lime-Rice Husk Ash(RHA) cement. The economic evaluation was done for three different kinds of cementitious binders, namely, OPC, Portalnd Rice Husk Ash Cement (PRHAC) which contained rice husk ash 50 percent by dry weight, and lime-RHA cement. The result showed that lime-RHA cement was the cheapest. The applicability of Freundlich's desorption isotherm was studied to assess the teachability of sludges. The teachability of cement mortars was found to follow the desorption isotherms. Therefore, it was concluded that based on this test, the leachate concentrations of the solidified heavy metals could be predicted, approximately by the Freundlich's isotherm desorption modeling.

  • PDF

The applicability of Freundlichs isotherm model for the leaching of solidified hazardous waste using cementitious binders

  • Jong Ho Youn;Heo
    • 한국환경과학회지
    • /
    • 제2권1호
    • /
    • pp.9.2-19
    • /
    • 1993
  • A laboratory study was conducted to investigate the immobilization of the laboratory waste sludge, mainly from chemical oxygen demand (COD) waste, using cementitious binders. The binders were: Ordinary Portland Cement (OPC), and lime-Rice Husk Ash (RHA) cement. The economic evaluation was done for three different kinds of cementitious binders, namely, OPC, Portaind Rice Husk Ash Cement (PRHAC) which contained rice husk ash U percent by dry weight, and lime-RHA cement. The result showed that lime-RHA cement was the cheapest. The applicability of Freundlich's desorption isotherm was studied to assess the teachability of sludges. The teachability of cement mortars was found to follow the desorption isotherms. Therefore, it was concluded that based on this test, the leachate concentrations of the solidified heavy metals could be predicted, approximately by the Freundlich's isotherm desorption modeling.

  • PDF

Resistance of Cementitious Binders against a Fall in the pH at Corrosion Initiation

  • Song, Ha-Won;Jung, Min-Sun;Ann, Ki Yong;Lee, Chang-Hong
    • Corrosion Science and Technology
    • /
    • 제8권3호
    • /
    • pp.110-115
    • /
    • 2009
  • At the onset of corrosion of steel in concrete, hydrogen ions usually evolve in the process of electrochemical reaction, thereby decreasing the pH of the pore solution, which can be buffered by cement hydration products, as being representatively illustrated by calcium hydroxide. Hence, a fall in the pH is dependent on properties of cement hydration (i.e. hydration products and degree of hydration). The present study tested acid neutralization capacity (ANC) of cementitious binders of OPC(Ordinary Portland Cement), 30% PFA(Pulverized Fuel Ash), 60% GGBS(Ground Granulated Blast Furnace Slag), 10% SF(Silica Fume) to quantify the resistance of cement matrix to a pH fall. Cement pastes were cast at 0.4 of a free W/C ratio with 1.5% chlorides by weight of binder in cast. Powder samples obtained crushed and ground specimen after 200 days of curing were diluted in still water combined with different levels of 1M nitric acid solution, ranging from 0.5 to 20 mol/kg. Then, the pH of diluted solution was monitored until any further change in the pH did not take place. It was seen that the pH of the diluted solution gradually decreased as the molar amount of nitric acid increased. At some particular values of the pH, however, a decrease in the pH was marginal, which can be expressed in the peak resistances to a pH fall in the ANC curve. The peaks occurred at the variations in the pH, depending on binder type, but commonly at about 12.5 in the pH, indicate a resistance of precipitated calcium hydroxide. The measurement of water soluble chloride at the end of test showed that the amount of free chloride was significantly increased at the pH corresponding to the peaks in the ANC curve, which may reflect the adsorption of hydration products to chlorides.

Evaluation of Mixing Conditions for the Production of Optimized High Flowing Concrete

  • Kim, Sang-Chel
    • KCI Concrete Journal
    • /
    • 제11권3호
    • /
    • pp.79-88
    • /
    • 1999
  • Most difficulties of inducing high fluidity on the concrete mixing design with a strength range of 210 to 240kg/$\textrm{cm}^2$ result from the segregation of aggregates due to the shortage of cementitious binders. To solve the problem, this study concentrated on finding the optimized amount of binder material which does not affect the concrete strength and is also economical. Also there were studies on the use of intermediate sized aggregates to avoid the gap-grading between coarse and fine aggregates so that the material segregation in high flowing concrete was and minimalized the fluidity and penetration capacity of the reinforcing bars was enhanced. Throughout the parametric study with respect to water/binder ratio. superplasticizer. replaceable mineral admixture, the size of coarse aggregate and mixing methods, the effect of each constituent on the characteristics of high flowing concrete could be observed. As a result or partially using stone powder or an intermediate class of aggregate (max. diameter 13mm) . it was fund that the fluidity of concrete significantly increased without material segregation and any change of compressive strengths. It was also proved in this study that proper mixing time and speed are significant factors influence the performence of high flowing concrete.

  • PDF

Resistance of Cementitious Binders to Chloride Induced Corrosion of Embedded Steel by Electrochemical and Microstructural Studies

  • Song, Ha-Won;Ann, Ki-Yong;Kim, Tae-Sang
    • Corrosion Science and Technology
    • /
    • 제8권2호
    • /
    • pp.74-80
    • /
    • 2009
  • The high alkaline property in the concrete pore solution protects the embedded steel in concrete from corrosion due to aggressive ions attack. However, a continuous supply of those ions, in particular, chlorides altogether with a pH fall in electrochemical reaction on the steel surface eventually depassivate the steel to corrode. To mitigate chloride-induced corrosion in concrete structures, finely grained mineral admixtures, for example, pulverized fuel ash (PFA), ground granulated blast furnace slag (GGBS) and silica fume (SF) have been often advised to replace ordinary Portland cement (OPC) partially as binder. A consistent assessment of those partial replacements has been rarely performed with respect to the resistance of each binder to corrosion, although the studies for each binder were extensively looked into in a way of measuring the corrosion rate, influence of microstructure or chemistry of chlorides ions with cement hydrations. The paper studies the behavior of steel corrosion, chloride transport, pore structure and buffering capacity of those cementitious binders. The corrosion rate of steel in mortars of OPC, 30% PFA, 60% GGBS and 10% SF respectively, with chloride in cast ranging from 0.0 to 3.0% by weight of binder was measured at 7, 28 and 150 days to determine the chloride threshold level and the rate of corrosion propagation, using the anodic polarization technique. Mercury intrusion porosimetry was also applied to cement pastes of each binder at 7 and 28 days to ensure the development of pore structure. Finally, the release rate of bound chlorides (i.e. buffering capacity) was measured at 150 days. The chloride threshold level was determined assuming that the corrosion rate is beyond 1-2 mA/$m^3$ at corrosion and the order of the level was OPC > 10% SF > 60% GGBS > 30% PFA. Mercury intrusion porosimetry showed that 10% SF paste produced the most dense pore structure, followed by 60% GGBS, 30% PFA and OPC pastes, respectively. It was found that OPC itself is beneficial in resisting to corrosion initiation, but use of pozzolanic materials as binders shows more resistance to chloride transport into concrete, thus delay the onset of corrosion.

Fuzzy inference systems based prediction of engineering properties of two-stage concrete

  • Najjar, Manal F.;Nehdi, Moncef L.;Azabi, Tareq M.;Soliman, Ahmed M.
    • Computers and Concrete
    • /
    • 제19권2호
    • /
    • pp.133-142
    • /
    • 2017
  • Two-stage concrete (TSC), also known as pre-placed aggregate concrete, is characterized by its unique placement technique, whereby the coarse aggregate is first placed in the formwork, then injected with a special grout. Despite its superior sustainability and technical features, TSC has remained a basic concrete technology without much use of modern chemical admixtures, new binders, fiber reinforcement or other emerging additions. In the present study, an experimental database for TSC was built. Different types of cementitious binders (single, binary, and ternary) comprising ordinary portland cement, fly ash, silica fume, and metakaolin were used to produce the various TSC mixtures. Different dosages of steel fibres having different lengths were also incorporated to enhance the mechanical properties of TSC. The database thus created was used to develop fuzzy logic models as predictive tools for the grout flowability and mechanical properties of TSC mixtures. The performance of the developed models was evaluated using statistical parameters and error analyses. The results indicate that the fuzzy logic models thus developed can be powerful tools for predicting the TSC grout flowability and mechanical properties and a useful aid for the design of TSC mixtures.

A Study on the High-Flowing Concrete with Low Unit Weight of Cement

  • Si Woo Lee;Hong Shik Choi;Sang Chel Kim;Gweon Heo
    • The Korean Journal of Ceramics
    • /
    • 제6권3호
    • /
    • pp.318-321
    • /
    • 2000
  • Most compressive strengths commonly used in the construction field are in a range of 240 to 300 kgf/$\textrm{cm}^2$ at 28 days. To get this rage of strengths, however, high-flowing concrete requires cementitious binders more than 400 to 450 kg/$\textrm{cm}^2$ for preventing segregation and sedimentation of aggregates. This amount of cementitious binder generates a large emission of excessive hydration heat, which may consequently induce harmful cracks in concrete structure. In order to reduce excessive hydration heat, thus, this paper aims at fabricating a high-flowing concrete under the condition that cement content is kept as low as 350kg/$\textrm{cm}^3$ by using viscose agents. In a parametric study, effects of cement types such as a ternary blended cement and Type V on he physical characteristics of high-flowing concrete were evaluated. In addition, the influence of viscosity was also investigated by applying two different viscose agents, one in a range of 6,000 to 10,000 cps and the others of 10,000 to 14,000 cps. In terms of chemical admixtures used in concrete mixture, the superplasticizer was Sulfonated Melamine-Formaldehyde Condensate with about 30,000 of molecular weight, and main component of viscose agent was HPMC (Hydroxy Propyl Methyl Cellulose). Slump flow was fixed at 50cm with different dosages of superplasticizer in weight.

  • PDF

Mechanical and durability properties of self-compacting concrete with blended binders

  • Xie, T.Y.;Elchalakani, M.;Mohamed Ali, M.S.;Dong, M.H.;Karrech, A.;Li, G.
    • Computers and Concrete
    • /
    • 제22권4호
    • /
    • pp.407-417
    • /
    • 2018
  • Over the past three decades, self-compacting concrete (SCC), which is characterized by its superior rheological properties, has been gradually used in construction industry. It is now recognized that the application of SCC using supplementary cementitious materials (SCM) is highly attractive and promising technology reducing the environmental impact of the construction industry and reducing the higher materials costs. This paper presents an experimental study that investigated the mechanical and durability properties of SCCs manufactured with blended binders including fly ash, slag, and micro-silica. A total of 8 batches of SCCs were manufactured. As series of tests were conducted to establish the rheological properties, compressive strength, and durability properties including the water absorption, water permeability, rapid chloride permeability and initial surface absorption of the SCCs. The influences of the SCC strength grade, blended types and content on the properties of the SCCs are investigated. Unified reactive indices are proposed based on the mix proportion and the chemical composition of the corresponding binders are used to assess the compressive strength and strength development of the SCCs. The results also indicate the differences in the underlying mechanisms to drive the durability properties of the SCC at the different strength grades.

결합재의 종류 및 치환율에 따른 구속수비의 특성에 관한 연구 (A Study on the Properties of the Confined water ratio for Binder type and Replacement ratio)

  • 권영호;이현호;이화진;하재담
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2004년도 춘계 학술발표회 제16권1호
    • /
    • pp.584-587
    • /
    • 2004
  • This research investigates the rheological behavior and the confined water ratio of the cement paste and binder condition in order to predict mix design proportion of the high flowing concrete. The purpose of this study is to determine the optimum replacement ratio of binders including fly ash, and lime stone powder by the cement weight. For this purpose, belite cement, blast furnace slag cement and ordinary portland cement are selected. As test results, the confined water ratio shows the following range ; OPC>blast furnace slag cement>belite cement. Therefore, belite cement is proved very excellent cementitious materials in a view point of the flowability. The optimum replacement ratio of lime stone powder is shown over $30\%$ in case of belite cement and about $10\%$ in case of slag cement type. Also, the optimum replacement ratio of fly ash is shown $30\%$ by the cement weight considering the confined water ratio and deformable coefficient of the paste condition.

  • PDF

특수시멘트 고화재를 이용한 지정폐기물의 고형화/안정화(I) (solidification/Stabilization of Hazardous Wasted Using Cementitious Material(I))

  • 임채용;백상현;엄태선;최롱;오병;이경훈
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2000년도 봄 학술발표회 논문집
    • /
    • pp.205-210
    • /
    • 2000
  • This study concerns the cement-solidification. stabilization of the electric furnace dust. Compressive strength and leaching test of heavy metals were evaluated for varing types and ratios of cements and the effect of some additives of hauyne clinker and slag were also discussed. In this cases of using cement binders more than 30%, the compressive strength showed the values over 150kgf/cm2. so it can be used as filler for concrete precastings. Type III cement and Hauyne clinker improved the compressive strength, especially early strength. Leaching amount of heavy metals was decreased when using type III cement and adding hauyne clinker and slag. The values were especially low in the case of slag addition.

  • PDF