• 제목/요약/키워드: cement stabilization

검색결과 138건 처리시간 0.022초

The Assessment for Environmental Stabilization of Ground Solidification Materials using Industrial y-product (산업부산물을 활용한 지반고화재의 환경안정성 평가)

  • Lee, Yeong Won;Mun, Gyeong Ju
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 한국건축시공학회 2014년도 춘계 학술논문 발표대회
    • /
    • pp.116-117
    • /
    • 2014
  • This study is to environmental safety assessment of ground solidification materials using industrial by-products. also, physical and chemical properties were investigated. as a result, compared to conventional cement the survival rates are capable, was judged to be possible utilizing of ECO-friendly ground solidification materials.

  • PDF

A Study on the Optimal Mixture Ratio for Stabilization of Surface Layer on Ultra-soft Marine Clay (초연약 해성점토의 표층고화처리를 위한 최적배합에 관한 연구)

  • 천병식;고경환;김진춘;한유찬;문성우
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 한국지반공학회 2002년도 봄 학술발표회 논문집
    • /
    • pp.731-738
    • /
    • 2002
  • Recently, as large constructions on the coast are performed frequently, surface layer stabilization method which Is one of the improvement methods for dredged soft clay has been applied. However, there have been few studies about the surface layer stabilization method. The purpose of this study is to clarify characteristics of ultra-soft marine clay and hardening agent. Also, optimal mixture ratio of hardening agent was verified through the laboratory tests such as statistical analysis and pilot tests. Laboratory tests were performed with proper hardening agent and test soil and standard mixing tables of hardening agent were determined according to ground conditions through statistical analysis. Also, applicability of surface layer stabilization method to field was verified by pilot tests. From the results of the tests, it was found that hardening agent materials such as cement, slag, fly-ash, inorganic salts, arwin, gypsum etc. affect on the appearing compressive strength. It was defined optimal mixture ratio which satisfies the required compressive strength from the statistical analysis. Also, It was compared the effect of ground improvement by cements and hardening agents through the pilot tests. This study will serve as data for design or construction criteria of stabilization of surface layer on ultra-soft marine clay.

  • PDF

The Optimum Mixture Condition for Stabilization of Songdo Silty Clay (송도 지역 실트질 점성토 고화처리를 위한 최적 배합 조건)

  • Kim, Jun-Young;Jang, Eui-Ryong;Chung, Choong-Ki;Jang, Soon-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • 제27권5호
    • /
    • pp.5-15
    • /
    • 2011
  • Recent increase of large scale construction near costal area has also increased the application of soft ground treatment. As a result, solidification with cement and lime which increases stability and durability of soils, is frequently used for surface layer stabilization in soft ground site. While stabilization of very soft clay with high plasticity and compressibility has widely been studied, studies on silty clay with low plasticity and compressibility are relatively rare. In this study, after stabilizing low plasticity silty clay of Songdo area with cement and lime under various water contents, mixing ratio, and curing time, uniaxial compression test and plate load test were performed. Strength properties from both tests were considerably consistent. And trackability of construction equipment on the treated surface layer of dredged land was estimated. Finally, optimum mixing condition for Songdo silty clay was proposed.

A Study on the Application of Paper Fly Ash as Stabilization/Hardening Agent (지반개량재로서 제지회의 활용에 관한 연구)

  • Lee, Yong-An;Lee, Hong-Ju;Kim, You-Seong
    • Journal of the Korean GEO-environmental Society
    • /
    • 제3권2호
    • /
    • pp.23-33
    • /
    • 2002
  • Examined a practical use possibility of paper fly ash that is industrial by-product as a stabilization/hardening agent. Performed unconfined compression test, scanning electron microscopy and pH analysis etc. for 100% paper fly ash-soil mixtures and each paper fly ash-soil mixtures that add cement as the second addition and sulfate component of small quantity for strength promotion and so on. In all cases, strength of admixtures increased according as curing time and mixing ratio increases but almost strength is revealed at mixing early and expressed maximum strength increase efficiency at mixing ratio 9% with raw soil. Compare with the case that use paper fly ash only, in case of cement amount 10~30% was included in paper fly ash, strength of admixtures increases two times and 40% was included, that increases from five to eight times.

  • PDF

Solidification/stabilization of simulated cadmium-contaminated wastes with magnesium potassium phosphate cement

  • Su, Ying;Yang, Jianming;Liu, Debin;Zhen, Shucong;Lin, Naixi;Zhou, Yongxin
    • Environmental Engineering Research
    • /
    • 제21권1호
    • /
    • pp.15-21
    • /
    • 2016
  • Magnesium potassium phosphate cement (MKPC) is an effective agent for solidification/stabilization (S/S) technology. To further explore the mechanism of the S/S by MKPC, two kinds of Cd including $Cd(NO_3)_2$ solution (L-Cd) and municipal solid waste incineration fly ash (MSWI FA) adsorbed Cd (S-Cd), were used to compare the effects of the form of heavy metal on S/S. The results showed that all the MKPC pastes had a high unconfined compressive strength (UCS) above 11 MPa. For L-Cd pastes, Cd leaching concentration increased with the increase of Cd content, and decreased with the increase of curing time. With the percentage of MSWI FA below 20%, S-Cd pastes exhibited similar Cd leaching concentrations as those of L-Cd pastes, while when the content of MSWI FA come up to 30%, the Cd leaching concentration increased significantly. To meet the standard GB5085.3-2007, the highest addition of S-Cd was 30% MSWI FA (6% Cd contained), with the Cd leaching concentration of 0.817 mg/L. The S/S of L-Cd is mainly due to chemical fixation, and the hydration compound of Cd was $NaCdPO_4$, while the S/S of S-Cd is due to physical encapsulation, which is dependent on the pore/crack size and porosity of the MKPC pastes.

Estimation of shear strength parameters of lime-cement stabilized granular soils from unconfined compressive tests

  • Azadegan, Omid;Li, Jie;Jafari, S. Hadi
    • Geomechanics and Engineering
    • /
    • 제7권3호
    • /
    • pp.247-261
    • /
    • 2014
  • Analytical and numerical modeling of soft or problematic soils stabilized with lime and cement require a number of soil parameters which are usually obtained from expensive and time-consuming laboratory experiments. The high shear strength of lime and cement stabilized soils make it extremely difficult to obtain high quality laboratory data in some cases. In this study, an alternative method is proposed, which uses the unconfined compressive strength and estimating functions available in literature to evaluate the shear strength parameters of the treated materials. The estimated properties were applied in finite element model to determine which estimating function is more appropriate for lime and cement treated granular soils. The results show that at the mid-range strength of the stabilized soils, most of applied functions have a good compatibility with laboratory conditions. However, application of some functions at lower or higher strengths would lead to underestimation or overestimation of the unconfined compressive strength.

Mechanical and microstructural investigations on cement-treated expansive organic subgrade soil

  • Nazerke Sagidullina;Jong Kim;Alfrendo Satyanaga;Taeseo Ku;Sung-Woo Moon
    • Geomechanics and Engineering
    • /
    • 제38권4호
    • /
    • pp.353-366
    • /
    • 2024
  • Organic soils pose significant challenges in geotechnical engineering due to their high compressibility and low stability, which can result in issues like differential settlement, rutting, and pavement deformation. This study explores effective methods for stabilizing organic soils. Rather than conventional ordinary Portland cement (OPC), the focus is on using environmentally friendly calcium sulfoaluminate (CSA) cement, known for its rapid setting, high early strength development, and environmental benefits. Mechanical behavior is analyzed through 1-D free swell, unconfined compressive strength (UCS), and bender element (BE) tests. Microstructural analyses, including Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM), characterize the soil mixed with CSA cement. Experimental results demonstrate improved soil properties with increasing cement dosage and curing periods. A notable strength increase is observed in soil samples with 15% cement content, with UCS doubling after 7 days. This trend aligns with shear wave velocity results from the BE test. SEM and FTIR spectroscopy reveal how CSA cement hydration forms hydrated calcium silicate gel and ettringite, enhancing soil properties. CSA cement is recommended for reinforcing organic subgrade soil due to its eco-friendly nature and rapid strength gain, contributing to improved durability.