• Title/Summary/Keyword: cement paste compressive strength

Search Result 256, Processing Time 0.023 seconds

Water Repellent Characteristics According to the Surface Properties of Cement Mortar Mixed with Water-soluble Water Wepellent (표면 성상에 따른 수용성 발수제 혼입 시멘트 모르타르의 발수특성)

  • Kang, Suk-Pyo;Kang, Hye-Ju;Hong, Seong-Uk;Yang, Seung-Hyeon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.6
    • /
    • pp.42-49
    • /
    • 2020
  • This paper is a basic study to improve durability by imparting hydrophobicity to the surface and sphere of cement-based materials. A cement mortar to which a silane/siloxane-based mixed water repellent was added was prepared, and its initial hydration performance, flow performance, and compressive strength were measured. In addition, after the surface was abraded, the water contact angle and water absorption were measured. The flow of cement mortar to which the water repellent was added was found to decrease up to 1.5% in the addition amount of the water repellent agent, and increased at 3.0% in the addition amount. It was found that the setting time of the cement paste was delayed in both the initial setting and the termination when the water repellent was added. It was found that the compressive strength decreased from 3.0% of the maximum added amount of the water repellent to a maximum of 30%. The contact angle was found to increase when the water repellent was added to the cement mortar, and the contact angle after surface polishing was found to be larger than before surface polishing. The addition of the water repellent showed hydrophobicity not only on the surface but also on the surface and cross section damaged by polishing. The water absorption rate was found to decrease when the water repellent was added to the cement mortar, and the water absorption rate after surface polishing was found to be greater than before surface polishing.

An Experimental Study on the Development of Electro Magnetic Pulse Shielding Cement Using Milled Carbon Fiber (저 직경 카본섬유를 사용한 전자기 펄스 차폐 시멘트 개발에 관한 실험적 연구)

  • Min, Tae-Beom
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.4
    • /
    • pp.429-435
    • /
    • 2020
  • In this study, physical properties and EMP shielding performance evaluation of cement paste according to the amount of milled carbon fiber was conducted to develop EMP shielding cement using carbon fiber. The length of the milled carbon fiber used was 100㎛, and it was used as a cement admixture because it showed a powdery form to the naked eye. As a result of the experiment, when 5% of the amount of cement was used, the milled carbon fiber was effective in compressive strength and EMP shielding, and the shielding effect did not increase when used beyond that. As a result of examining the EMP shielding performance according to the thickness of the specimen, the plain without milled carbon fiber had no effect of increasing the shielding rate according to the thickness. The shielding performance of the specimens using the milled carbon fiber increased as the thickness increased. Therefore, in order to increase the EMP shielding rate when comparing and evaluating the performance according to the amount of milled carbon fiber used and the thickness of the specimen, 5% of the milled carbon fiber used is optimal. In addition, the method of increasing the thickness is considered to be effective.

Resistance on the Magnesium Sulfate Attack of Mortars with Silica Fume (실리카흄 혼합 모르타르의 황산마그네슘 저항성)

  • 문한영;이승태;유지훈;최강식
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.379-384
    • /
    • 2002
  • The deterioration of concrete due to sulfate ions in various sulfate environments such as groundwater, soil and seawater is one of important factors degrading the durability of concrete structure. The aim of this paper is to evaluate on the magnesium sulfate alttack resistance of mortars with silica fume. In this study, compressive strength loss and length change of prismatic mortars, containing silica fume, immersed in 5% magnesium sulfate solution for 270 days were investigated. Additionally, paste powders with same binder were used to observe reactants of cement matrices through the instrumental analysis such as XRD, SEM and MIP. Results obtained from this study indicate that the greater damaging effects of the magnesium soulution are due to the decomposition of the C-S-H gel to M-C-S-H.

  • PDF

Experimental studies on rheological properties of smart dynamic concrete

  • Bauchkara, Sunil D.;Chore, H.S.
    • Advances in concrete construction
    • /
    • v.5 no.3
    • /
    • pp.183-199
    • /
    • 2017
  • This paper reports an experimental study into the rheological behaviour of Smart Dynamic Concrete (SDC). The investigation is aimed at quantifying the effect of the varying amount of mineral admixtures on the rheology, setting time and compressive strength of SDC containing natural sand and crushed sand. Ordinary Portland cement (OPC) in conjunction with the mineral admixtures was used in different replacement ratio keeping the mix paste volume (35%) and water binder ratio (0.4) constant at controlled laboratory atmospheric temperature ($33^{\circ}C$ to $35^{\circ}C$). The results show that the properties and amount of fine aggregate have a strong influence on the admixture demand for similar initial workability, i.e., flow. The large amounts of fines and lower value of fineness modulus (FM) of natural sand primarily increases the yield stress of the SDC. The mineral admixtures at various replacement ratios strongly contribute to the yield stress and plastic viscosity of SDC due to inter particle friction and cohesion.

Comparative Analysis of Various Industrial By-Products Pozzolanic Activity (다양한 산업부산물들의 포졸란 반응성 비교분석)

  • Choi, Ik-Je;Kim, Ji-Hyun;Chung, Chul-Woo;Lee, Soo-Yong
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.05a
    • /
    • pp.32-33
    • /
    • 2016
  • In this work, pozzolanic activities of various waste materials were compared with those of well-known pozzolanic materials. Uncondensed and densified silica fume, two ASTM class F fly ashes with different calcium contents, and bentonite powder, ceramic powder obtained from wash basin, and waste glass wool, which can possibly possess pozzolanic property were chosen for comparison. Drop in electrical conductivity at 40℃ saturated lime solution was measured for each materials. The amount of Ca(OH)2 decomposed from cement paste at 450~500℃ was also measured used to evaluate pozzolanic activity. The 28 day compressive strength were used to observe the mechanical property enhanced by various waste materials.

  • PDF

A Study on the Physical and Mechanical Properties of Kelp Forest Regeneration Porous Concrete (조장조성용 포러스콘크리트의 물리${\cdot}$역학적 특성에 관한 실험적 연구)

  • Seo Dae seuk;Park Seong Bum;Cho Gwang yeon;Lee Jun;Jang Young Ill;Lee yoon Sun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.521-524
    • /
    • 2004
  • The Purpose of this study is to develope the method for early recovery of the biodiversity in the oligotrophical costal area, it is important in the recovery of the biodiversity to make kelp forest grow in the concerned area. In order for it, sufficient nutrient is required as well as the proper seedbed, Hence in this study, granulated fertilizer, which contains nutrient, such as nitrogen, phosphorus and etc, is coated by cement paste, and then is mixed in to the porous concrete in order to provide seedbed and nutrient simultaneously. The physical and mechanical properties, such as water permeability, void ratio, compressive strength of porous concrete with granulated fertilizer are discussed.

  • PDF

Properties of Cement Paste Containing High Volume γ-C2S and MgO Subjected to CO2 Curing (γ-C2S 및 MgO를 다량 혼입한 시멘트 페이스트의 CO2 양생유무에 따른 특성변화)

  • Sung, Myung-Jin;Cho, Hyeong-Kyu;Lee, Han-Seung
    • Journal of the Korea Institute of Building Construction
    • /
    • v.15 no.3
    • /
    • pp.281-289
    • /
    • 2015
  • Carbonation of concrete causes reduction of pH and subsequently causes steel corrosion for reinforced concrete structure. However, for plain concrete structure or PC product, it can lead to a decrease in porosity, high density, improvement of concrete, shrinkage-compensation. Recently, based on this theory, research of $CO_2$ curing effect has been performed, but it was mainly focused on its effects on compressive strength using only ordinary portland cement. Researches on $CO_2$ curing effect for concrete containing $CO_2$ reactive materials such as ${\gamma}-C_2S$, MgO haven't been investigated. Therefore, this study has performed experiments under water-binder ratio 40%, and the replacement ratios of ${\gamma}-C_2S$ and MgO were 90%. Micro-chemical analysis, measurement of compressive strength according to admixtures and $CO_2$ curing were investigated. Results from this study revealed that higher strength was measured in case of $CO_2$ curing compared with none $CO_2$ curing for plain specimen indicating difference between 1.08 and 1.26 times, in case of ${\gamma}-C_2S$ 90, MgO 90 specimen, incorporating high volume replaced as much as 90%, it was proven that when applying $CO_2$ curing, higher strength which has difference between 14.56 and 45.7 times, and between 6.5 and 10.37 times was measured for each specimen compared to none $CO_2$ curing. Through micro-chemical analysis, massive amount of $CaCO_3$, $MgCO_3$ and decrease of porosity were appeared.

Fundamental Properties of Cement Composites Containing Lightly Burnt MgO Powders (저온 소성한 MgO 분말을 혼입한 시멘트 복합체의 기초 물성)

  • Jang, Bong-Seok;Kwon, Yong-Gil;Choi, Seul-Woo;Lee, Kwang-Myong
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.2
    • /
    • pp.225-233
    • /
    • 2011
  • The volume change in concrete takes place with changes in temperature and water content immediately after concrete casting. In the early age stage, the thermal and drying shrinkages can cause cracks that are very crucial to the durability of concrete. It was reported that when the cement with lightly-burnt MgO powder was used, the shrinkage of concrete can be reduced. This study investigates fundamental properties of cement composites with lightly burnt MgO powder by performing various experiments. The stability test results verified that MgO powder in cement composites does not cause any abnormal expansion. Also, the hydrate product analysis results obtained from MgO cement paste showed that MgO powder reduces the shrinkage at the longterm ages. In addition, the cement composites containing the proper amount of MgO powder could improve compressive strength. Finally, the shrinkage reduction from using MgO powder can be optimized by increasing MgO replacement level and curing temperature.

Prediction of Autogenous Shrinkage on Concrete by Unsaturated Pore Compensation Hydration Model (불포화 공극 보정 수화도 모델을 이용한 콘크리트의 자기수축 예측)

  • Lee, Chang Soo;Park, Jong Hyok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.5A
    • /
    • pp.909-915
    • /
    • 2006
  • To predict autogenous shrinkage of concrete, unsaturated pore compensation factor could be calculated by experiments of autogenous shrinkage of cement paste on the assumption that the differences between degree of hydration and strain rate of autogenous shrinkage are unsaturated pore formation rate. Applying unsaturated pore compensation factor on modified Pickket model considering contribution factor and non-contribution factor to autogenous shrinkage of concrete, experimental data and existing model were compared. From the results modified Pickket model was verified to present similar tendency between Tazawa model and experimental data, but CEB-FIP model might be corrected because this model uses ultimate autogenous shrinkage underestimated and the same autogenous time function of concrete material properties considering only compressive strength.

An Experimental Study to Determine the Mechanical Properties of Recycled Aggregate Separated from Demolished Concrete and Recycled Aggregate Concrete (폐 콘크리트에서 분리된 재생골재와 재생콘크리트의 공학적 특성규명을 위한 실험적 연구)

  • 전쌍순;이효민;황진연;진치섭;박현재
    • The Journal of Engineering Geology
    • /
    • v.13 no.3
    • /
    • pp.345-358
    • /
    • 2003
  • Recently, the reuse of coarse aggregate derived from demolished concrete was introduced into practice with two environmental aspects: protection of natural sources of aggregate and recycling of construction waste. However, recycled aggregate has been used for the very limited application such as subbase material for pavement and constructional filling material because it was considered as low quality constructional materials. In the present study, in order to examine the possibility that recycled aggregate can be used for concrete mixing, we conducted various experimental tests to identify mineralogical, chemical and mechanical properties of recycled aggregate and to determine the workability and mechanical properties of recycled aggregate concrete (RAC). The cement paste and mortar contained in recycled aggregate significantly affect the basic mechanical properties of aggregate and the workability and mechanical properties of RAC. However, RCA mixed with the proper replacement ratio of recycled aggregate shows the comparable compressive strength and freeze and thaw resistance to those of normal concrete. Therefore, it is considered that recycled aggregate can be widely used for concrete if the cement paste and mortar can be efficiently removed from recycled aggregate and/or if the effective replacement ratios of recycled aggregate are applied for mixing concrete.