• Title/Summary/Keyword: cement mortar and paste

Search Result 153, Processing Time 0.022 seconds

Reactivity of aluminosilicate materials and synthesis of geopolymer mortar under ambient and hot curing condition

  • Zafar, Idrees;Tahir, Muhammad Akram;Hameed, Rizwan;Rashid, Khuram;Ju, Minkwan
    • Advances in concrete construction
    • /
    • v.13 no.1
    • /
    • pp.71-81
    • /
    • 2022
  • Aluminosilicate materials as precursors are heterogenous in nature, consisting of inert and partially reactive portion, and have varying proportions depending upon source materials. It is essential to assess the reactivity of precursor prior to synthesize geopolymers. Moreover, reactivity may act as decisive factor for setting molar concentration of NaOH, curing temperature and setting proportion of different precursors. In this experimental work, the reactivities of two precursors, low calcium (fly ash (FA)) and high calcium (ground granulated blast furnace slag (GGBS)), were assessed through the dissolution of aluminosilicate at (i) three molar concentrations (8, 12, and 16 M) of NaOH solution, (ii) 6 to 24 h dissolution time, and (iii) 20-100℃. Based on paratermeters influencing the reactivity, different proportions of ternary binders (two precursors and ordinary cement) were activated by the combined NaOH and Na2SiO3 solutions with two alkaline activators to precursor ratios, to synthesize the geopolymer. Reactivity results revealed that GGBS was 20-30% more reactive than FA at 20℃, at all three molar concentrations, but its reactivity decreased by 32-46% with increasing temperature due to the high calcium content. Setting time of geopolymer paste was reduced by adding GGBS due to its fast reactivity. Both GGBS and cement promoted the formation of all types of gels (i.e., C-S-H, C-A-S-H, and N-A-S-H). As a result, it was found that a specified mixing proportion could be used to improve the compressive strength over 30 MPa at both the ambient and hot curing conditions.

Development of Inorganic Binder Using Ash from Sewage Sludge Incinerator I (하수슬러지 소각재를 이용한 무기바인더 개발 I)

  • Lee, Hyun-Joo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.12
    • /
    • pp.843-850
    • /
    • 2014
  • This study investigated to recycle ash produced in the sewage sludge incinerator using reduction/stabilization. Nonsintering process was performed by binding cement, geobond and sand mixed with sewage sludge ash (SSA). Results showed that unconfined compressive strength could be obtained components of sewage sludge ash. it exceeded more than double score of the 22.54 Mpa ($229.7kg/cm^2$) Korean standard. chemical ingradients of the sewage sludge ash was mainly composed of $SiO_2$, $Al_2O_3$, $Fe_2O_3$, CaO and others, which were similar to those of the each binders consisting cement and geobond. microstructure of solidified speceimen for the different admixture was related to the compressive strength according to SEM analysis. optimum mixing range of the sewage sludge ash to inorganic binder was found to be 10~40% which can widly safely regulate the confined compressive strength. This study revealed the sewage sludge ash can be partial replacement of the inorganic binder for recycling.

Assessment of Formwork-Seepage Minimization in High Fluidity, Normal Strength Concrete Utilizing Thixotropic Properties (고유동 일반강도 콘크리트의 요변성 부여에 따른 거푸집 누출 저감 성능 분석)

  • Kim, Young-Ki;Lee, Yu-Jeong;Kim, In-Tae;Han, Dong-Yeop
    • Journal of the Korea Institute of Building Construction
    • /
    • v.23 no.4
    • /
    • pp.337-348
    • /
    • 2023
  • The central objective of this study is to curtail the leakage of mortar or cement paste, often resultant of ill-constructed formwork, by implementing thixotropy in the formulation of high-fluidity, standard-strength concrete. When such concrete is utilized in smaller scale construction projects, instances of formwork gaps due to suboptimal construction precision may lead to significant leakage of mortar and paste, a problem not typically encountered with traditional slump-flow concrete. In this investigation, Polyvinyl Alcohol(PVA) and borax are incorporated into the concrete mixture to induce thixotropy. The experimental design includes varying methodologies for integrating PVA and borax, while assessing alterations in diverse concrete performances, including thixotropy and leakage reduction potential that simulates formwork gap conditions. Under the experimental conditions defined within this study, it was found that replacing, rather than merely adding PVA and borax, aids in averting water addition via suspensions. This approach yielded promising results in terms of concrete properties and proved efficacious in stemming leakage in concrete possessing sufficient thixotropy. Notably, when a 6% PVA suspension was substituted, a significant reduction in leakage was observed. Consequently, it is projected that construction quality can be ensured, even with lower precision formwork, by applying thixotropy to concrete through the use of PVA and borax.

A study on the application of waste concrete powder as a material for construction (건설용 재료로써 폐콘크리트 미분말의 활용성 연구)

  • Kim, Yong-Jic;Choi, Yun-Wang;Kim, Sang-Chel;Kim, Young-Jin
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.4
    • /
    • pp.88-94
    • /
    • 2012
  • This study is conducted to utilize waste concrete powder made as a by-product manufacturing high quality recycled aggregate. The blaine fineness of the used waste concrete powder was 928 and $1,360cm^2/g$. As the main characteristic of waste concrete powder, it showed an angular type similar to cement, but hydrated products were attached on the surface of particles. In addition, the size of the particles of waste concrete powder was larger than OPC and in terms of chemical components it had higher $SiO_2$ contents. The viscosity of the paste that mixed waste concrete power decreased by 62% at the most, compared to the paste that only used OPC, and the final set time was delayed about two hours. As composition rates of waste concrete powder increased, the flow value decreased by 30% at the most according to the comparison with mortar that only used OPC, and sorptivity coefficients increased by 70%. The compressive strength of mortar decreased by 73% at the most as composition rates of waste concrete powder increased. According to the test results, it is desirable to use waste concrete powder by combining OPC appropriately(below 15%).

  • PDF

Tensile Strength Characteristics of Cement Paste Mixed with Fibers (섬유가 혼합된 시멘트 페이스트의 인장강도 특성에 관한 연구)

  • Park, Sung-Sik;Hou, Yaolong
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.3
    • /
    • pp.5-16
    • /
    • 2015
  • The characteristics of tensile strength of fiber-reinforced grouting (cement paste) injected into rocks or soils were studied. A tensile strength of such materials utilized in civil engineering has been commonly tested by an indirect splitting tensile test (Brazilian test). In this study, a direct tensile testing method was developed with built-in cylinder inside a cylindrical specimen with 15 cm in diameter and 30 cm in height. The testing specimen was prepared with 0%, 0.5%, or 1% (by weight) of a PVA or steel fiber reinforced mortar. A specimen with 5 cm in diameter and 10 cm in height was also prepared and tested for the splitting tensile test. Each specimen was air cured for 7 days or 28 days before testing. The tensile strength of built-in cylinder test showed 96%-290% higher than that of splitting tensile test. The 3D finite element analyses on these tensile tests showed that the tensile strength from built-in cylinder test had was 3 times higher than that of splitting tensile test. It is similar to experimental result. As an amount of fiber increased from 0% to 1%, its tensile strength increased by 119%-190% or 23%-131% for 7 days or 28 days-cured specimens, respectively. As a curing period increased from 7 days to 28 days, its strength decreased. Most specimens reinforced with PVA fiber showed tensile strength 14%-38% higher than that of steel fiber reinforced specimens.

Setting Time and Strength Characteristics of Cement Mixtures with Set Accelerating Agent for Shotcrete (숏크리트용 급결제를 첨가한 시멘트 모르타르의 응결 및 강도특성)

  • Kim Jin-Cheol;Ryu Jong-Hyun
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.1 s.79
    • /
    • pp.70-78
    • /
    • 2004
  • Although set accelerating agents are used generally in New Austrian Tunneling Method, the standards for test methods and quality of set accelerating agents are not prescribed domestically. In this study, the proprieties of the various standards and the characteristics of set accelerating agents for shotcrete were evaluated. The alkali contents of set accelerating agents based on silicate, aluminate and cement were higher than those of alkali-free ones. From the result, it is thought that the quality control of aggregate should be enhanced and that the number of test cycle of alkali-aggregate reaction should be increased. The setting times of cement paste with set accelerating agents based on silicate and alkali-free ones were different largely with mixing methods. Compressive strength of mortar with set accelerating agents based on silicate, aluminate and cement at one day satisfied the specifications of Korea Concrete Institute. However, the strength ratio compared to control mix at 28 days showed as $50{\~}65\%$ except for the alkali-free set accelerating agents. As a results of setting time and strength test, the establishment of domestic standards that can reflect the characteristics of materials and construction methods of tunnels and that can increase quality of set accelerating agents is required immediately.

Investigation on Properties of Cement Mortar Using Heat Treated Flue Gas Desulfurization Gypsum (열처리된 배연탈황석고를 혼입한 시멘트 모르타르의 물성 연구)

  • Chung, Chul-Woo;Lee, Yong-Mu;Kim, Ji-Hyun;Kim, Young-Su
    • Journal of the Korea Institute of Building Construction
    • /
    • v.16 no.6
    • /
    • pp.497-503
    • /
    • 2016
  • Flue gas desulfurization gypsum is produced from emission process of fossil fuel power plant to remove sulfur dioxide ($SO_2$) from exhaust gas. Production of flue gas desulfurization gypsum in Republic of Korea has been increasing due to the enforced regulations by government agency. Since flue gas desulfurization gypsum has characteristic that is similar to that of natural gypsum, there is a strong possibility for flue gas desulfurization gypsum to replace the role of natural gypsum. However, consumption of such material is still limited, only used for agricultural purposes or to make gypsum boards, it is necessary to expand the use of this material more aggressively. In this research, the chemical and mineralogical properties of flue gas desulfurization gypsum were investigated, and flue gas desulfurization gypsum with heat treatment was used to make cement paste. According to the results, it was found that flue gas desulfurization gypsum used in this experiment was a very high purity gypsum, and shown to have similar property to that of natural gypsum. Heat treating flue gas desulfurization gypsum above $100^{\circ}C$ was shown to bring beneficial effect on both compressive strength and drying shrinkage

Corrosion of Steel in Blended Concretes Containing OPC, PFA, GGBS and SF

  • Song, Ha-Won;Lee, Chang-Hong;Lee, Kewn Chu
    • Corrosion Science and Technology
    • /
    • v.8 no.5
    • /
    • pp.171-176
    • /
    • 2009
  • The chloride threshold level (CTL) in mixed concrete containing, ordinary Portland cement (OPC), pulverized fuel ash (PFA) ground granulated blast furnace slag (GGBS), and silica fume (SF) is important for study on corrosion of reinforced concrete structures. The CTL is defined as a critical content of chloride at the steel depth of the steel which causes the breakdown of the passive film. The criterion of the CTL represented by total chloride content has been used due to convenience and practicality. In order to demonstrate a relationship between the CTL by total chloride content and the CTL by free chloride content, corrosion test and chloride binding capacity test were carried out. In corrosion test, Mortar specimens were cast using OPC, PFA, GGBS and SF, chlorides were admixed ranging 0.0, 0.2, 0.4, 0.8, 1.0, 1.5, 2.0, 2.5 and 3.0% by weight of binder. All specimens were cured 28 days, and then the corrosion rate was measured by the Tafel's extrapolation method. In chloride binding capacity, paste specimens were casting using OPC, PFA, GGBS and SF, chlorides were admixed ranging 0.1, 0.2, 0.3, 0.5, 1.0, 1.5, 2.0, 2.5 and 3.0% by weight of binders. At 28days, solution mixed with the powder of ground specimens was used to measure binding capacity. All specimens of both experiments were wrapped in polythene film to avoid leaching out of chloride and hydroxyl ions. As a result, the CTL by total chloride content ranged from 0.36-1.44% by weight of binders and the CTL by free chloride content ranged from 0.14-0.96%. Accordingly, the difference was ranging, from 0.22 to 0.48% by weight of binder. The order of difference for binder is OPC > 10% SF > 30% PFA > 60% GGBS.

Investigation of Seismic Performance of RC Wall-Slab Frames with Masonry Infill (조적채움벽을 갖는 RC 벽-슬래브 골조의 내진성능 연구)

  • Kim, Chan Ho;Lee, Seung Jae;Heo, Seok Jae;Eom, Tae Sung
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.26 no.3
    • /
    • pp.137-147
    • /
    • 2022
  • This study investigated the seismic performance of reinforced concrete (RC) wall-slab frames with masonry infills. Four RC wall-slab frames with or without masonry infill were tested under cyclic loading. The RC frames were composed of in-plane and out-of-plane walls and top and bottom slabs. For masonry infill walls, cement bricks were stacked applying mortar paste only at the bed joints, and, at the top, a gap of 50 mm was intentionally left between the masonry wall and top RC slab. Both sides of the masonry walls were finished by applying ordinary or fiber-reinforced mortars. The tests showed that despite the gap on top of the masonry walls, the strength and stiffness of the infilled frames were significantly increased and were different depending on the direction of loading and the finishing mortars. During repeated loading, the masonry walls underwent horizontal and diagonal cracking and corner crushing/spalling, showing a rocking mode inside the RC wall-slab frame. Interestingly, this rocking mode delayed loss of strength, and as a result, the ductility of the infilled frames increased to the same level as the bare frame. The interaction of masonry infill and adjacent RC walls, depending on the direction of loading, was further investigated based on test observations.

Influence of Relative humidity on the CO2 Diffusion Coefficient in Concrete (콘크리트 중의 이산화탄소 확산계수에 대한 상대습도 영향 연구)

  • Oh, Byung-Hwan;Jung, Sang-Hwa;Lee, Myung-Kun
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.6
    • /
    • pp.778-784
    • /
    • 2003
  • The carbonation of concrete is one of the major factors that cause durability problems in concrete structures. The rate of carbonation depends largely upon the diffusivity of carbon dioxide in concrete. The purpose of this study is to identify the diffusion coefficients of carbon dioxide for various concrete mixtures. To this end, several series of tests have been planned and conducted. The test results indicate that the diffusion of carbon dioxide reached the steady-state within about five hours after exposure. The diffusion coefficient increases with the increase of water-cement ratio and decreases with the increase of relative humidity at the same water-cement ratio. The content of aggregates also influences the diffusivity of carbon dioxide in concrete. It was found that the diffusion coefficient of cement paste is larger than that of concrete or mortar. The experimental study of carbon dioxide diffusivity in this study will allow more realistic assessment of carbonation depth in concrete structures.