• Title/Summary/Keyword: cement matrix

Search Result 317, Processing Time 0.025 seconds

Nondestructive Evaluation and Microfailure Mechanisms of Single Fibers/Brittle Cement Matrix Composites using Electro-Micromechanical Technique and Acoustic Emission (Electro-Micromechanical 시험법과 Acoustic Emission을 이용한 단섬유/시멘트 복합재료의 미세파괴 메커니즘과 비파괴적 평가)

  • 박종만;이상일;김진원;윤동진
    • Composites Research
    • /
    • v.14 no.3
    • /
    • pp.18-31
    • /
    • 2001
  • Interfacial and microfailure properties of the modified steel, carbon and glass fibers/cement composites were investigated using electro-pullout test under tensile and compressive tests with acoustic emission (AE). The hand-sanded steel composite exhibited higher interfacial shear strength (IFSS) than the untreated and even neoalkoxy zirconate (Zr) treated steel fiber composites. This might be due to the enhanced mechanical interlocking, compared to possible hydrogen or covalent bonds. During curing process, the contact resistivity decreased rapidly at the initial stage and then showed a level-off. Comparing to the untreated case, the contact resistivity of either Zr-treated or hand-sanded steel fiber composites increased to the infinity at latter stage. The number of AE signals of hand-sanded steel fiber composite was much more than those of the untreated and Zr-treated cases due to many interlayer failure signals. AE waveforms for pullout and frictional signals of the hand-sanded composite are larger than those of the untreated case. For dual matrix composite (DMC), AE energy and waveform under compressive loading were much higher and larger than those under tensile loading, due to brittle but well-enduring ceramic nature against compressive stress. Vertical multicrack exhibits fur glass fiber composite under tensile test, whereas buckling failure appeared under compressive loading. Electro-micromechanical technique with AE can be used as an efficient nondestructive (NDT) method to evaluate the interfacial and microfailure mechanisms for conductive fibers/brittle and nontransparent cement composites.

  • PDF

Tensile Behavior of Hybrid Fiber Reinforced Cement Composite According to the Hooked Steel Fiber and Polyvinyl Alcohol Fiber Blending Ratio and Strain Rate (후크형 강섬유와 폴리비닐알코올 섬유의 혼합 비율과 변형속도에 따른 하이브리드 섬유보강 시멘트복합체의 인장거동)

  • Son, Min-Jae;Kim, Gyu-Yong;Lee, Sang-Kyu;Kim, Hong-Seop;Nam, Jeong-Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.6
    • /
    • pp.98-105
    • /
    • 2017
  • In this study, the fiber blending ratio and strain rate effect on the tensile behavior of hybrid fiber reinforced cement composite was evaluated. Hooked steel fiber and polyvinyl alcohol fiber were used for reinforcing fiber. The fiber blending ratio of HSF+PVA were 1.5+0.5, 1.0+1.0 and 0.5+1.5vol.%. As a results, the tensile strength, strain capacity and fracture toughness of the hooked steel fiber reinforced cement composites were improved by the increase of the bond strength of the fiber and the matrix according to increase of strain rate. However, the tensile stress sharply decreased after the peak stress because of the decrease in the number of straightened pull-out fibers by micro cracks in the matrix around hooked steel fiber. On the other hand, PVA fiber showed cut-off fracture at strain rate $10^{-6}/s$ with multiple cracks. However, at the strain rate $10^1/s$, the multiple cracks and strain capacity were decreased because of the pull-out fracture of PVA fiber. The HSF1.5PVA0.5 shown the highest tensile strength because the PVA fiber suppressed the micro cracks in the matrix around the hooked steel fiber and improved the pull-out resistance of hooked steel fiber. Thus, DIF of strain capacity and fracture toughness of HSF1.5PVA were greatly improved. In addition, the synergistic response of fracture toughness was positive because the tensile stress was slowly decreased after the peak stress by improvement of the pull-out resistance of hooked steel fiber at strain rate $10^1/s$.

An Analysis of the Job Performance in Operative Restoration by Dental Hygienists (치과위생사의 치과보존분야 직무수행 현황 분석)

  • Cho, Pyeong-Kyu
    • Journal of Korean society of Dental Hygiene
    • /
    • v.4 no.2
    • /
    • pp.277-291
    • /
    • 2004
  • The purpose of this study is to analyze the dental hygienists' overall performance in operative restoration and the clinical performance in operative restoration according to dental hygienists' career and to provide basic data for establishing the appropriate range of dental hygienists' work. Subjects of this study are 339 dental hygienists working at dental clinic and hospital nationwide, selected by their working place, career, type of clinic, and location of clinical institution. The distribution of people who responded to the survey shows that 81 belong to beginner level(less than 2 years since entering clinic), 115 intermediate level(2 to 3 years since entering clinic), 81 higher level(4 to 5 years since entering clinic) and 62 advanced level(more than 6 years since their entering clinic). In terms of the types of clinical institution, 178 belong to dental clinics and 161 belong to dental hospitals. The survey used in this study are focused on perception about clinical performance in operative dentistry and adequacy of the work. Operative dentistry consists of operative restoration and endodontic therapy. The operative restoration consists of 15 categories such as patient welcoming, examination and diagnosis, planning of treatment, anesthesia, control of moisture, cavity preparation, pulp protection, matrix band application, amalgam filling, resin filling, glass ionomer cement filling, abrasive strip removal, rubber dam removal, bite check and polishing, patient education, and arrangement. The reliability was Cronbach's Alpha .9453. SPSS 10.0 for Windows was used to analyze the responses. One way ANOVA was utilized to verify the differences in the dental hygienists' job performance in operative restoration and their job performance according to career. When significant difference was found. Duncan multi comparison post hoc was done. To sum up the results of this study, patient welcoming look the first place in the operative restoration. It was followed by patient education, examination and diagnosis, introducing treatment plan, resin filling, glass ionomer cement filling, amalgam filling, bite check and polishing, anesthesia, pulp protection, control of moisture, abrasive strip removal, cavity preparation, matrix band application, rubber dam removal, and anesthesia. In terms of the clinical performance by career, there were significant differences in 19 activities such as medical eraluation, oral examination, patient charting, intra oral readio graphs, firm developing fixing mounting, curing light gun, education of attention content after operation. Based on the results of this study, the specific range of operative restoration for dental hygienists should be focused on providing basic data for dentists' diagnosis, alleviation of fear and aching accompanied by injection and anesthesia, data providing for dentists' decision of anesthesia degree, and maximization of control of moisture.

  • PDF

Characteristics of EVA-Polymer Modified Mortars Recycling Rapid-chilled Steel Slag Fine Aggregate (급냉 제강슬래그를 재활용한 EVA-폴리머 시멘트 모르타르의 특성)

  • Hwang, Eui-Hwan;Kim, Jin-Man
    • Applied Chemistry for Engineering
    • /
    • v.19 no.6
    • /
    • pp.652-660
    • /
    • 2008
  • For the recycling of rapid-chilled steel slag, the mechanical strengths and physical properties of EVA-polymer modified mortars with the various replacement ratios of rapid-chilled steel slag were investigated. Twenty five specimens of polymer modified mortars were prepared with the five different amounts of EVA-polymer modifier (0, 5, 10, 15, 20 wt%) and rapid-chilled steel slag (0, 25, 50, 75, 100 wt%). For the investigation of the characteristics of polymer modified mortars, the measurements such as water-cement ratio, unit volume weight, air content for fresh mortar and compressive strength, flexural strength, water absorption, hot water resistance, porosity and SEM investigation for curing specimens were conducted. As a results, with an increase in the replacement ratio of rapid-chilled steel slag, water-cement ratios decreased but unit volume weight increased remarkably. With increasing EVA-polymer modifier and the replacement ratio of rapid-chilled steel slag, percent of water absorption decreased but compressive and flexural strengths increased remarkably. By the hot water resistance test, mechanical strengths decreased but total pore volume and porosity increased remarkably. In the SEM observation, the components of specimen were shown to stick to each other in the form of co-matrix phase before hot water resistance test, but polymer modifier of co-matrix phase was decomposed or deteriorated after hot water resistance test.

Nano-engineered concrete using recycled aggregates and nano-silica: Taguchi approach

  • Prusty, Rajeswari;Mukharjee, Bibhuti B.;Barai, Sudhirkumar V.
    • Advances in concrete construction
    • /
    • v.3 no.4
    • /
    • pp.253-268
    • /
    • 2015
  • This paper investigates the influence of various mix design parameters on the characteristics of concrete containing recycled coarse aggregates and Nano-Silica using Taguchi method. The present study adopts Water-cement ratio, Recycled Coarse Aggregate (%), Maximum cement content and Nano-Silica (%) as factors with each one having three different levels. Using the above mentioned control parameters with levels an Orthogonal Array (OA) matrix experiments of L9 (34) has selected and nine number of concrete mixes has been prepared. Compressive Strength, Split Tensile Strength, Flexural Tensile Strength, Modulus of Elasticity and Non-Destructive parameters are selected as responses. Experimental results are analyzed and the optimum level for each response is predicted. Analysis of 28 days CS depicts that NS (%) is the most significant factor among all factors. Analysis of the tensile strength results indicates that the effect of control factor W/C ratio is ranked one and then NS (%) is ranked two which suggests that W/C ratio and NS (%) have more influence as compared to other two factors. However, the factor that affects the modulus of elasticity most is found to be RCA (%). Finally, validation experiments have been carried out with the optimal mixture of concrete with Nano-Silica for the desired engineering properties of recycled aggregate concrete. Moreover, the comparative study of the predicted and experimental results concludes that errors between both experimental and predicted values are within the permissible limits. This present study highlights the application of Taguchi method as an efficient tool in determining the effects of constituent materials in mix proportioning of concrete.

Flowability and Strength of Cement Composites with Different Dosages of Multi-Walled CNTs (다중벽 탄소나노튜브의 혼입량에 따른 시멘트 복합체의 유동성 및 강도 변화)

  • Ha, Sung-Jin;Kang, Su-Tae
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.1
    • /
    • pp.67-74
    • /
    • 2016
  • With several different dosages of multi-walled CNTs which was 0.1, 0.3, and 0.5% of the weight of binder, the fluidity in fresh CNT cement composites, as well as the strength and strength development with age of the hardened composites were investigated in this experimental study. The experimental results from flow test indicated that the increase in the dosage of CNTs badly impacted on the workability of fresh composites, and the results from rheological measurements presented the decrease in plastic viscosity and the increase in yield stress according to the amount of CNTs. In addition, the thixotrophy in the flow curve obtained from the rheology test was observed more noticeably in the composites with higher dosage of CNTs. With the experiments on the strength properties, the improvement of both compressive and tensile strengths with the increase of CNTs dosage could be obtained. Moreover, early strength development by adding CNTs was found when it was compared with plain cementious matrix without CNT.

Influence of Silica Fume on Strength Properties of Alkali-Activated Slag Mortar (실리카 퓸이 알칼리 활성화 슬래그 모르타르의 강도특성에 미치는 영향)

  • Kim, Tae-Wan
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.3
    • /
    • pp.305-312
    • /
    • 2013
  • This paper reports the results of an investigation into the effects of silica fume on strength properties of alkali-activated slag cement (AASC) with water-binder (W/B) ratio and replacement ratio of silica fume content. The W/B ratio varied between 0.50 and 0.60 at a constant increment of 0.05. The silica fume content varied from 0% to 50% by weight of slag. The activators was used sodium hydroxide (NaOH) and the dosage of activator was 3M. The strength development with W/B ratio has been studied at different ages of 1, 3, 7 and 28 days. For mixes of AASC mortars with varying silica fume content, the flow values were lower than the control mixes (without silica fume). The flow value was decrease as the content of silica fume increase. This is because the higher surface areas of silica fume particles increase the water requirement. The analysis of these results indicates that, increasing the silica fume content in AASC mortar also increased the compressive strength. Moreover, the strength decreases with the W/B ratios increases. This is because the particle sizes of silica fume are smaller than slag. The high compressive strength of blended slag-silica fume mortars was due to both the filler effect and the activated reaction of silica fume evidently giving the mortar matrix a denser microstructure, thereby resulting in a significant gain in strength.

Development of reference materials for mortar: Determination of the components and relation with mixing ratio

  • Lim, Dong Kyu;Choi, Myoung Sung
    • Advances in concrete construction
    • /
    • v.10 no.5
    • /
    • pp.381-391
    • /
    • 2020
  • This study aimed to develop reference materials (RMs) for mortar that can simulate the initial flow characteristics with constant quality over a long period. Through the previous research on the development of RMs for cement paste, the combination of limestone, glycerol, and water was used as the basic matrix for developing RMs for mortar in this study. In addition, glass beads of three particle sizes (0.5, 1.0, and 2.0 mm) and ISO standard sand were selected as tentative candidates to derive fine aggregate substitutes. The mixture of glass beads could simulate the initial flow characteristics of mortar, but under the same mixing ratio, replicates showed an unstable tendency to indicate inconsistent values due to the generation of electrostatic properties between materials and equipment. On the other hand, the mixture using ISO standard Sand not only simulates the constant flow characteristics for a long period of time, but also shows stable results with little error in replicates. Therefore, limestone, glycerol, ISO standard sand, and water were finally determined as components that met the required properties of RMs for mortar. The effect of each component on the flow characteristics of RMs was analyzed. It was found that glycerol increased the cohesion between the particles of standard sand, resulting in a constant increase both in the plastic viscosity and yield stress. Both limestone and standard sand had a dominant effect on the yield stress. The relationships between various mortar mixing ratios and the corresponding mixing ratios of RMs were established. In addition, the results of the verification experiment showed that the rheological properties of the RMs obtained through the relationships correlated with various water/cement ratios and the fine aggregate volume fractions of mortar obtained with same manner. In other words, the RMs for mortar developed in this study can be used as standard samples because they can simulate the initial flow characteristics of mortar of various mixing ratios for a long period without any chemical changes.

Sulfate Attack Resistance and Microstructural Observations of Cement Matrix Exposed to a Low Temperature Condition (저온환경에 노출된 시멘트 경화체의 황산염침식 저항성 및 미세구조적 조사)

  • Lee, Seung-Tae
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.5
    • /
    • pp.611-617
    • /
    • 2009
  • This paper reports an experimental study on the damage mechanism and resistance of Type I portland cement mortar and paste samples exposed to 5% sodium sulfate solution with different solution temperatures; namely, $4^{\circ}C$, $10^{\circ}C$ and $20^{\circ}C$. The resistance of mortar samples was evaluated using expansion, compressive strength and flexural strength measurements. Some microstructural observations such as x-ray diffraction, differential scanning calorimetry and scanning electron microscopy were also introduced to elucidate reactants formed by sulfate attack, especially in a low temperature condition. From the results, it was found that the degree of damage in the mortar samples was significantly associated with the temperature of sulfate solution. Low temperature of the sulfate solution led to the formation of thaumasite in mortar and paste samples, and subsequently a poor resistance to sulfate attack. Thus, it is noted that when concrete structures are exposed to sulfate media in the condition of a cold region or whether, special care should be taken.

On-Line Monitoring of Microscopic Fracture Behavior of Concrete Using Acoustic Emission (음향방출을 이용한 콘크리트 부재의 미시적 파괴특성의 온라인 모니터링)

  • Lee, Joon-Hyun;Lee, Jin-Kyung;Yoon, Dong-Jin
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.19 no.1
    • /
    • pp.25-33
    • /
    • 1999
  • Since concrete is an inhomogeneous material consisting of larger aggregates and sand embedded in a cement paste matrix, it relatively shows a complex failure mechanism. In order to assure the reliability of concrete structure. microscopic fracture behavior and internal damage progress of concrete under the loading should be fully understood. In this study, an acoustic emission(AE) technique has been used to clarify microscopic failure mechanism and their corresponding AE signal characteristics of concrete under three-point bending test. In addition 2-dimensional AE source location has been performed to monitor the progress of an internal damage and the successive crack growth behavior during the loading. The relationship between AE signal characteristics and microscopic fracture mechanism is discussed.

  • PDF