• Title/Summary/Keyword: cement industry

Search Result 388, Processing Time 0.027 seconds

Basic Research for Carbon Dioxide Reaction Hardening Cement Products (이산화탄소 반응경화 시멘트 2차제품 적용을 위한 기초 연구)

  • Lee, Hyang Sun;Song, Hun
    • Cement Symposium
    • /
    • s.49
    • /
    • pp.21-22
    • /
    • 2022
  • The purpose of this study is to reduce carbon dioxide emissions in the cement industry and to collect carbon dioxide generated in industrial facilities such as cement factories and thermal power plants, store and utilize it, and convert high-value-added resources. While conventional Ordinary Portland Cement is characterized by hardening through hydration reactions, basic research is underway to develop cement that reacts with carbon dioxide and converts it into carbonate mineralization.

  • PDF

Strength Characteristics of Epoxy Cement Mortar without Hardening Agent (경화제를 사용하지 않은 에폭시 시멘트 모르타르의 압축강도 특성에 관한 연구)

  • Park, Young-Shik
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.10 no.4
    • /
    • pp.207-211
    • /
    • 2007
  • The durable lifetime of RC structures is shortened by various reasons, which are the generation of cracks in construction and service term, the exterior deterioration according to climatic condition, the surface damage due to chloride attack and the corrosion of reinforced bars. The durability of concrete structures is nevertheless able to be increased by the method and the material of reinforcement and repair. The epoxy resin is widely used for reinforment and repair of concrete because of the superiority in mechanical property, adhesive property, abrasion resistance, impact resistance and chemical resistance. The epoxy cement mortar with hardening agent has a lot of disadvantages that are troublesome mixing work, weakened weatherability and high cost for hardening agent. In this study, the mix proportion of mortar is presented just only with epoxy resin and some admixtures, and the test result of mortar without hardening agent shows the higher strength than the mortar with hardening agent. In the mix proportion, the weight of epoxy resin must be less than 15% of the unit weight of cement, and 10% of unit weight of cement is adequate for the weight of admixtures.

  • PDF

An Experimental Study on the Sustainable Performance of Concrete through the Quantitative Analysis of Carbon Dioxide Absorption (이산화탄소 흡수량 정량분석을 통한 콘크리트의 친환경성능에 관한 실험적 연구)

  • Choi, Jin Young;Lee, Han Seung;Kyung, Je Woon;Lee, Sang Hyeon;Yang, Nae Won
    • KIEAE Journal
    • /
    • v.7 no.4
    • /
    • pp.113-118
    • /
    • 2007
  • From the construction material the cement and the concrete which will reach to 90% are used to construction. But the cement occurrence (from the whole industry 4.4% of carbon dioxide exhaust quantity) makes the carbon dioxide of manufacture hour and anti- the recognition which is an environment industry. The cement absorbs the carbon dioxide during life period of the life time. It calls carbonation. In this study in order to evaluate the carbon dioxide absorption of the cement test produced the mortar specimens which it follows in the W/C. And carbonatable material of mortar specimens (calcium hydroxide) the quantitly it measured, reference study it led and absorption of carbon dioxide quantity it produced. Finally two result comparisons leads and it is a fundamental study which does the test evaluation possibility and a propriety investigation of carbon dioxide absorption quantity in objective.

Effect of sulfate activators on mechanical property of high replacement low-calcium ultrafine fly ash blended cement paste

  • Liu, Baoju;Tan, Jinxia;Shi, Jinyan;Liang, Hui;Jiang, Junyi;Yang, Yuanxia
    • Advances in concrete construction
    • /
    • v.11 no.3
    • /
    • pp.183-192
    • /
    • 2021
  • Due to economic and environmental benefits, increasing the substitution ratio of ordinary cement by industry by-products like fly ash (FA) is one of the best approaches to reduce the impact of the concrete industry on the environment. However, as the substitution rate of FA increases, it will have an adverse impact on the performance of cement-based materials, so the actual substitution rate of FA is limited to around 10-30%. Therefore, in order to increase the early-age strength of high replacement (30-70%) low-calcium ultrafine FA blended cement paste, sodium sulfate and calcium sulfate dihydrate were used to improve the reactivity of FA. The results show that sodium sulfate has a significant enhancement effect on the strength of the composite pastes in the early and late ages, while calcium sulfate dihydrate has only a slight effect in the late ages. The addition of sodium sulfate in the cement-FA blended system can enhance the gain rate of non-evaporation water, and can decrease the Ca(OH)2 content. In addition, when the sulfate chemical activators are added, the ettringite content increases, and the surface of the FA is dissolved and hydrated.

수도권 동북부 지역 물류단지 건설에 관한 연구(양회단지를 중심으로)

  • Kwon Yong-Jang;Kim Hyun-Woong;Yoo Jae-Kyun
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.1652-1661
    • /
    • 2004
  • It is essential to our economy that preserve the cement industry which has contributed to the growth of construction industry. However, it has not been easy to come up with constructing Silo complex in downtown area due to the opposition of residents, and lack of the supply base aroused the troubles in provision of cement. The main objective of this paper lies in making plans for constructing Silo complex and estimating logistics costs affected by the alternative complex.

  • PDF

A Fundamental Study on Nano-cement by Chemical Synthesis (화학적 방법에 의한 나노시멘트 개발에 관한 기초 연구)

  • Jo, Byung-Wan;Kang, Seok-Won;Yoon, Kwang-Won;Choi, Ji-Sun
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.6
    • /
    • pp.713-718
    • /
    • 2009
  • Advanced industries-IT, BT, NT and ET are rapidly developing in 21 century. And the cement industry is becoming the principal factor in air pollution because of the creation of $CO_2$ during manufacturing. Also, the cement industry will be faced with a crisis due to the exhaustion of natural resources. In this study, nano cement by Bottom-up method of a chemical synthesis was developed. The generation of $CO_2$ during the plasticization process of cement manufacturing was avoided. The purpose was to produce building materials that have both high strength and durability as the high value-added growth engine industry of the 21 century. The nano cement was developed using hydrothermal synthesis. This is a method of mixing after ripening, by manufacturing the high density gel and low gel, which does not require special test equipment or pressure conditions to produce. Particle size, SEM, EDX, and porosity tests were conducted. This study investigated the compressive strength of concrete with various compositions. Specimens were tested for compressive strength at 3, 7, 14 and 28 days. The medium-sized (50% by weight) cement particles created by chemical synthesis were less than 168 nm. The compressive strength of the mortar prepared using this cement was 53.9 MPa. But it was judged that succeeding study will be necessary for development of nano building materials with high ability and economical analysis.

Application of Alkali-Activated Ternary Blended Cement in Manufacture of Ready-Mixed Concrete (알칼리 활성화 3성분계 혼합시멘트의 레미콘 적용 시험)

  • Yang, Wan-Hee;Hwang, Ji-Soon;Lee, Sea-Hyun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.17 no.1
    • /
    • pp.47-54
    • /
    • 2017
  • Cement industry is typical carbon-emission industry. If the industrial by-products(granulated blast-furnace slag (GGBFS), fly ash, etc.) are used a large amount, it might be able to reduce cement consumption and mitigate carbon emissions. In this case, however, decrease of early strength is relatively large. Therefore, there is a limitation in increase of the amount of substitute. Considering these circumstances, it would be a good solution to reduce carbon emissions in cement industry to improve the performances of mixed cement through proper alkali-activation in Portland blended cement using GGBFS or fly ash. Therefore, this study prepared concrete in ready-mixed concrete manufacturing facilities with an addition of a binder which used 2.0% modified alkali sulfate activator after mixing Portland cement, GGBFS and fly ash in the ratio of 4:4:2 and assessed its basic properties. The results found the followings: The use of modified alkali-sulfate activator slightly reduced slump and shortened setting time. As a result, bleeding capacity decreased while early strength improved. In addition, there is no big difference in carbonation resistance. It appears that there should be continued experiments and analyses on the related long-term aged specimens.

Properties of the Strength of the Cement Mortar Depending on the KS and ISO (KS 규격과 ISO 규격에 따른 시멘트 모르터의 강도특성)

  • 김선미;최정호;서상교
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.239-244
    • /
    • 2001
  • Opens the construction market recently, the construction industry of Korea has faced up to the barrier of globalism, and has been enforced to follow the various global standards in many aspects. Accordingly, it is expected that the test method related to the cement and concrete will be changed to conform to the international standards in Korea. Therefore, in this study, the strength tests are executed for the cement mortars, made by KS and ISO standards respectively, and then obtains such results. 1) The flow of the cement mortar according to ISO is about 8% higher ,than that of KS. 2) The flexural strength of the cement mortar according to ISO is about 10~20% higher than that of KS, and the compressive strength is about 30% higher. 3) The compressive strength relation between the cement mortars of KS and ISO may be expressed in the first-order recurrence formula as follows: Y = 1.33X - 8 In which X is the compressive strength(kgf/$\textrm{cm}^2$) of the mortar according to KS and Y is the compressive strength(kgf/$\textrm{cm}^2$) of the mortar according to ISO.

  • PDF

Dimensional Stability of Cement-Bonded Boards Manufactured with Coffee Chaff

  • AJAYI, Babatunde
    • Journal of the Korean Wood Science and Technology
    • /
    • v.34 no.5
    • /
    • pp.52-58
    • /
    • 2006
  • Coffee chaff for manufacturing of the 6 mm thick cement-bonded boards was obtained from a coffee processing industry at Omuo-Ekiti, in Ekiti State, Nigeria. Boards were produced with three levels of cement to coffee chaff ratio of 1.5:1, 2.5:1 and 3.5:1; and at three levels of mixing curing reagent of 2.0%, 2.5% and 3.0%. Three dimensional properties of thickness swelling (TS), water absorption (WA) and linear expansion (LE) were investigated after 48 hours immersion in water. The mean values obtained for TS, WA and LE ranged from 0.46% to 1.47%, from 11.52% to 24.00%, from 0.19% to 0.35%, respectively. The most dimensionally stable boards were produced at the highest mixing levels of curing reagent and cement to coffee chaff ratio of 3.0% and 3.5:1, respectively. The coffee chaff is suitable as raw material for the manufacture of cement-bonded composites and it would be able to stimulate and activate the use of other agro-byproducts for the manufacture of value-added panels.

A Study on the Properties of Electrical Conductive Cement Mortar (전지전도성 시멘트모르타르의 특성에 관한 연구)

  • Choi, Gil-Seob;Kim, Bong-Chan;Kim, Wan-Ki;Soh, Yang-Seob
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.136-141
    • /
    • 2000
  • Concrete has been used for many years as a composite material that has excellent mechanical properties and durability for construction. However, concrete ia a poor electrical conductor, especially under dry conditions. Concrete that is excellent in both mechanical and electrical conductivity properties may have important applications in the electrical, electronic, military and construction industry (e.g for de-icing road from snow). The purpose of this investigation is to improve the electrical conductive of cement mortar preparared with graphite as filler. From the test result, as the ratio of graphite/cement increased, fluidity, fluidity and strength decreased but resistivity decreased. The resistivity of electrical conductive cement mortar is effect by water/cement ratio and water content of specimen. From this study, it is enough to assure the use of graphite as a conductive filler for electrical conducive cement mortar.

  • PDF