• Title/Summary/Keyword: cement composition

Search Result 227, Processing Time 0.027 seconds

Performance of self-compacting concrete with manufactured crushed sand

  • Benyamina, Smain;Menadi, Belkacem;Bernard, Siham Kamali;Kenai, Said
    • Advances in concrete construction
    • /
    • v.7 no.2
    • /
    • pp.87-96
    • /
    • 2019
  • Self-compacting concretes (SCC) are highly fluid concrete which can flow without any vibration. Their composition requires a large quantity of fines to limit the risk of bleeding and segregation. The use of crushed sand rich in limestone fines could be an adequate solution for both economic and environmental reasons. This paper investigates the influence of quarry limestone fines from manufactured crushed sand on rheological, mechanical and durability properties of SCC. For this purpose, five mixtures of SCC with different limestone fines content as substitution of crushed sand (0, 5, 10, 15 and 20%) were prepared at constant water-to-cement ratio of 0.40 and $490kg/m^3$ of cement content. Fresh SCC mixtures were tested by slump flow test, V-funnel flow time test, L-box height ratio, segregation resistance and rheological test using a rheometer. Compressive and flexural strengths of SCC mixtures were evaluated at 28 days. Regarding durability properties, total porosity, capillary water absorption and chloride-ion migration were studied at 180 days. For the two test modes in fresh state, the results indicated compatibility between slump flow/yield stress (${\tau}_0$) and V-funnel flow time/plastic viscosity (${\mu}$). Increasing the substitution level of limestone fines in SCC mixtures, contributes to the decrease of the slump flow and the yield stress. All SCC mixtures investigated achieved adequate filling, adequate passing ability and exhibit no segregation. Moreover, the inclusion of limestone fines as crushed sand substitution reduces the capillary water absorption, chloride-ion migration and consequently enhances the durability performance.

Analysis of Piezoresistive Properties of Cement Composites with Fly Ash and Carbon Nanotubes Using Transformer Algorithm (트랜스포머 알고리즘을 활용한 탄소나노튜브와 플라이애시 혼입 시멘트 복합재료의 압저항 특성 분석)

  • Jonghyeok Kim;Jinho Bang;Haemin Jeon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.36 no.6
    • /
    • pp.415-421
    • /
    • 2023
  • In this study, the piezoresistive properties of cementitious composites enhanced with carbon nanotubes for improved electrical conductivity were analyzed using a deep learning-based transformer algorithm. Experimental execution was performed in parallel for acquisition of training data. Previous studies on mixture design, specimen fabrication, chemical composition analysis, and piezoresistive performance testing are also reviewed in this paper. Notably, specimens in which fly ash substituted 50% of the binder material were fabricated and evaluated in this study, in addition to carbon nanotube-infused specimens, thereby exploring the potential enhancement of piezoresistive characteristics in conductive cementitious materials. The experimental results showed more stable piezoresistive responses in specimens with fly-ash substituted binder. The transformer model was trained using 80% of the gathered data, with the remaining 20% employed for validation. The analytical outcomes were generally consistent with empirical measurements, yielding an average absolute error and root mean square error between 0.069 to 0.074 and 0.124 to 0.132, respectively.

Investigating the effect of using three pozzolans (including the nanoadditive) in combination on the formation and development of cracks in concretes using non-contact measurement method

  • Grzegorz Ludwik Golewski
    • Advances in nano research
    • /
    • v.16 no.3
    • /
    • pp.217-229
    • /
    • 2024
  • This paper presents results of visual analysis of cracks formation and propagation of concretes made of quaternary binders (QBC). A composition of the two most commonly used mineral additives, i.e. fly ash (FA) and silica fume (SF) in combination with nanosilica (nS), has been proposed as a partial replacement of the cement. The principal objective of the present study is to achieve information about the effect of simultaneous incorporation of three pozzolans as partial replacement to the OPC on the fracture processes in concretes made from quaternary binders (QBC). The modern and precise non-contact measurement method (NCMM) via digital image correlation (DIC) technique was used, during the studies. In the course of experiments it was established that the substitution of OPC with three pozzolans including the nanoadditive in FA+SF+nS FA+SF+nS combination causes a clear change of brittleness and behavior during fractures in QBCs. It was found that the shape of cracks in unmodified concrete was quasi-linear. Substitution of the binder by SCMs resulted in a slight heterogeneity of the structure of the QBC, including only SF and nS, and clear heterogeneity for concretes with the FA additive. In addition, as content of FA rises throughout each of QBC series, material becomes more ductile and shows less brittle failure. It means that an increase in the FA content in the concrete mix causes a significant change in fracture process in this composite in comparison to concrete with the addition of silica modifiers only.

Evaluation of Performance of Modified Recycling Asphalt Mixture and Normal Asphalt Mixture Using Basalt Powder Sludge as Filler (현무암 석분슬러지를 채움재로 활용한 개질재생아스팔트혼합물과 일반아스팔트혼합물의 공용성 평가)

  • Kim, Seung Hyun;Lee, Dong Wook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.38 no.4
    • /
    • pp.611-619
    • /
    • 2018
  • Basalt powder sludge (abbreviated BPS) is an inevitable industry by product resulted from the stone processing. Recently, demands for natural materials have been increasing in the construction and landscaping fields, therefore, amounts of BPS have been also increasing. Since most of BPS are used as landfill and earth soil, it is necessary to figure out to expedite their utilization. In this study, by considering the characteristics of precipitation of Jeju, effectiveness of BPS as a filler for asphalt compounds mixed with cement were analyzed. As a result, BPS satisfies quality criterion required in KS F 3501. Marshall mixing designs were performed to determine the optimal asphalt content for the Modified recycling asphalt mixture (27% recycling aggregate) and the Normal asphalt mixture. Effectiveness of BPS were identified by the Marshall Stability Test with the mixing ratio (level 3) of two asphalt compounds and composition ration (level 3) of BPS and cement. Performance of asphalt compounds shown appropriate effect of mixing and composition ratios of the filler were assessed. Test results show that two types of asphalt compounds satisfy the quality standards of the MLIT (2015). Therefore, BPS could be used as filler for asphalt compounds.

THE BONDING DURABILITY OF RESIN CEMENTS (레진시멘트의 접착 내구성에 관한 연구)

  • Cho, Min-Woo;Park, Sang-Hyuk;Kim, Jong-Ryul;Choi, Kyoung-Kyu
    • Restorative Dentistry and Endodontics
    • /
    • v.32 no.4
    • /
    • pp.343-355
    • /
    • 2007
  • The objectives of this study was to evaluate the durability of 4 resin cements by means of microtensile bond strength test combined with thermocycling method and fractographic FE-SEM analysis. Experimental groups were prepared according to thermocycling (0, 1,000, 5,000) and the kind of resin cements, those were Variolink II, Multilink, Panavia F 2.0, Rely X Unicem. Flat dentin surfaces were created on mid-coronal dentin of extracted third molars. Then fresh dentin surface was grounded with 320-grit silicon carbide abrasive papers to create uniform smear layers. Indirect composite block (Tescera, Bisco Inc., Schaumburg, IL, USA) was fabricated ($12\;{\times}\;12\;{\times}\;6\;mm^3$). It's surface for bonding to tooth was grounded with silicon carbide abrasive papers from 180- to 600-grit serially, then sandblasted witk $20\;-\;50\;{\mu}m$ alumina oxide. According to each manufacturer's instruction, dentin surface was treated and indirect composite block was luted on it using each resin cement. For Rely X Unicem, dentin surface was not treated. The bonded tooth-resin block were stored in distilled water at $37^{\circ}C$ for 24 hours. After thermocycling, the bonded tooth-resin block was sectioned occluso-gingivally to 1.0 mm thick serial slabs using all Isomet slow-speed saw (Isomet, Buehler Ltd, Lake Bluff, IL, USA). These sectioned slabs were further sectioned to $1.0\;{\times}\;1.0\;mm^2$ composite-dentin beams. The specimens were tested with universal testing machine (EZ-Test, Shimadzu, Japan) at a crosshead speed of 1.0 mm/min with maximum load of 500 N. The data was analyzed using one-way ANOVA and Duncan's multiple comparison test at $p\;{\leq}\;0.05$ level. Within the limited results, we conclude as follows; 1. The bond strength of Variolink II was evaluated the highest among experimental groups and was significantly decreased after 1,000 thermocycling (p < 0.05). 2. The bond strength of Multilink was more affected by thermocycling than the other experimental groups and significantly decreased after 1,000 thermocycling (p < 0.05). 3. Panavia F 2.0 and Rely X Unicem showed the gradually decreased tendency of microtensile bond strength according to thermocycling but there was no significant difference (p > 0.05). 4. Adhesive based-resin cements showed lower bond strength with or without thermocycling than composite based-resin cements. 5. Variolink II & Multilink showed high bond strength and mixed failure, which was occurred with a thin layer of luting resin cement before thermocycling and gradually increased adhesive failure along the dentin surface after thermocycling. The bonding performance of resin cement can be affected by application procedure and chemical composition. Composite based-resin cement showed higher bond strength and durability than adhesive based-resin cement.

An Experimental Study on Durability of Mortar and Concrete using Shrinkage reducing typed Superplasticizer (수축저감형 혼화제를 이용한 모르타르 및 콘크리트의 물리적 특성에 관한 기초적 연구)

  • Woo, Hyung-Min;Park, Hee-Gon;Lee, Young-Do
    • Journal of the Korea Institute of Building Construction
    • /
    • v.16 no.6
    • /
    • pp.561-569
    • /
    • 2016
  • Concrete is cheap, easy to deal with, and the quality is satisfactory. Also, it is one of the easiest materials to get because chemical composition of cement is similar to chemical composition of surface. On the other hand, it is so vulnerable to transform because of weak binding capacity and low binding energy that it produces cracks. Cracks decline durability, usability, safety of structures and damage exterior. In order to decline drying shrinkage crack, this study used shrinkage reducing typed Superplasticizer, which is combination of and water-reducing agent for convenience, different with existing study using AE agent, water-reducing agent, shrinkage reducing agent,. Considering SRS field application possibility, this study planned to mix concrete and mortar generally used in ready-mixed concrete company and did basic experiment depending on a change of SRS content ratio and admixture. Based on the experiment result. It is judged that SRS admixture 2% is proper ratio when Given the intensity and length change. Also mass combination will conduct follow-up studies.

Effect of Properties of Fly-ashes on the Characteristics of Fly-ash Mortars (플라이애시 종류에 따른 플라이애시 모르타르의 특성에 대한 연구)

  • Kim, Joo-Hyung;Park, Byoung-Sun;Jung, Sang-Hwa;Choi, Young-Cheol
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.4
    • /
    • pp.439-445
    • /
    • 2016
  • Recently, a large number of researches about concrete containing high volume fly-ash(HVFA) have been carried to obtain carbon dioxide reduction, resource recycle and durable option in concrete industry. The quality of fly-ash such as chemical composition and fineness has high variability due to the differences of used fuels, operation condition in power plant. The aim of this study is to investigate the performances of fly-ash cement mortar containing different type of fly-ashes. The basic analysis of fly ash such as chemical composition, SEM image analysis were performed. Many mortar specimens were fabricated to evaluate the properties (compressive strength, drying shrinkage and carbonation) of mortar with various fly ash. From the test results, the quality of each fly ash must be considered and fully weighted in fly ash concrete.

The Influence of Al2O3 on the Properties of Alkali-Activated Slag Cement (알칼리 활성화 슬래그 시멘트의 특성에 미치는 Al2O3의 영향)

  • Kim, Tae-Wan;Kang, Choong-Hyun
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.2
    • /
    • pp.205-212
    • /
    • 2016
  • This research investigates the influence of ground granulated blast furnace slag (GGBFS) composition on the alkali-activated slag cement (AASC). Aluminum oxide ($Al_2O_3$) was added to GGBFS binder between 2% and 16% by weight. The alkaline activators KOH (potassium hydroxide) was used and the water to binder ratio of 0.50. The strength development results indicate that increasing the amount of $Al_2O_3$ enhanced hydration. The 2M KOH + 16% $Al_2O_3$ and 4M KOH + 16% $Al_2O_3$ specimens had the highest strength, with an average of 30.8 MPa and 45.2 MPa, after curing for 28days. The strength at 28days of 2M KOH + 16% $Al_2O_3$ was 46% higher than that of 2M KOH (without $Al_2O_3$). Also, the strength at 28days of 4M KOH + 16% $Al_2O_3$ was 44% higher than that of 4M KOH (without $Al_2O_3$). Increase the $Al_2O_3$ contents of the binder results in the strength development at all curing ages. The incorporation of AASC tended to increases the ultrasonic pulse velocity (UPV) due to the similar effects of strength, but increasing the amount of $Al_2O_3$ adversely decreases the water absorption and porosity. Higher addition of $Al_2O_3$ in the specimens increases the Al/Ca and Al/Si in the hydrated products. SEM and EDX analyses show that the formation of much denser microstructures with $Al_2O_3$ addition.

Engineering Characteristics of Blast Furnace Slag Cement Mortar Using Chlorine Bypass System-Dust as Alkali Activator (Chlorine Bypass System-Dust를 알칼리 자극제로 사용한 고로슬래그 시멘트 모르타르의 공학적 특성)

  • Han, Min-Cheol;Lee, Dong-Joo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.2
    • /
    • pp.235-244
    • /
    • 2020
  • This study conducted a series of studies to offer a novel method of using CBS-dust that produced as by-product in the manufacture of cement. Four different contents of BS and CBS-dust were adopted for test parameters of this study. Mortar with 50% of W/B was fabricated. First, in the case of the fresh mortar, the flow decreased as the CBS-dust replacement rate increased, but the binder composition ratio BS 45% and 65% showed higher fl ow than Pl ain when repl acing CBS-dust 5%. In the case of air content, overall, the tendency was proportional to the CBS-dust replacement rate, and chloride tended to exceed the reference value at all replacement rates except for the CBS-dust 0% replacement. The compressive strength of the hardened mortar shows the resul t that the strength is improved when the CBS-dust is repl aced by 5% to 10%, and the CSH gel and structure formation is confirmed by microstructure analysis through the hydration reaction when the CBS-dust is replaced. Therefore, for a given condition CBS-dust is used as a early-strength admixture in a concrete secondary product that uses a large amount of admixture without reinforcing bars it can be an effective method for enhancing the strength of concrete as an alkali activator.

Manufacture and Application of anhydrous calcium sulfate from flue gas desulfurization gypsum (排煙脫黃石膏로부터 無水石膏 製造 및 適用 特性)

  • Hyun, Jong-Yeong;Jeong, Soo-Bok;Chae, Young-Bae;Kim, Byung-Su
    • Resources Recycling
    • /
    • v.14 no.2
    • /
    • pp.10-18
    • /
    • 2005
  • The manufacture property of anhydrous calcium sulfate (anhydrite Ⅱ) from flue gas desulfurization (FGD) gypsum discharged from domestic thermoelectric power plants to apply as an auxiliary material of cement and concrete by high temperature treatment were investigated. The FGD gypsum was completely converted to anhydrite Ⅱ at the temperature of 700$^{\circ}C$ and the retention time of 1 hr. In the phase transformation process, particle size was also changed. The chemical composition, particle size and heat property of anhydrite Ⅱ made from the FGD gypsum were similar to them of natural gypsum. In the leaching test of sulfate ion (SO$_4^{2-}$) at the temperature of 90$^{\circ}C$ and the retention time of 1 hr, the amount of leached SO$_4^{2-}$ for the anhydrite Ⅱ that was sintered at 700$^{\circ}C$ for 1 hr was about 50 wt.% based on that of natural gypsum. In addition, the amount of leached SO$_4^{2-}$ for the anhydrite Ⅱ by adding the slaked lime of 3 wt.% decreased about 70 wt.% comparing with that of natural gypsum. In the application test, the compressive strength of cement and concrete manufactured by using the anhydrite Ⅱ as an auxiliary material were similar or superior compared with them of cement and concrete done by natural gypsum as an auxiliary material.