• Title/Summary/Keyword: cement composition

Search Result 227, Processing Time 0.028 seconds

Manufacture of Cement-Bonded Particleboards from Korean Pine and Larch by Curing of Supercritical CO2 Fluid

  • Suh, Jin-Suk;Hermawan, Dede;Kawai, Shuichi
    • Journal of the Korean Wood Science and Technology
    • /
    • v.28 no.4
    • /
    • pp.41-50
    • /
    • 2000
  • Cement-bonded particleboard is being used as outdoor siding material all over the world, because this composite particularly bears a light weight, high resistance against fire, decay, and crack by cyclic freezing and thawing, anti-shock property, and strength enhancement. Construction systems are currently changing into a frame-building style and wooden houses are being constructed with prefabrication type. Therefore, they require a more durability at outdoor-exposed sides. In this study, the cement hydration property for Korean pine particle, Japanese larch particle and face- and middle layer particles (designated as PB particle below) used in Korean particleboard-manufacturing company was investigated, and the rapid manufacturing characteristics of cement-bonded particleboard by supercritical $CO_2$ curing was evaluated. Korean pine flour showed a good hydration property, however, larch flour showed a bad one. PB particle had a better hydration property than larch flour. The addition of $Na_2SiO_3$ indicated a negative effect on hydration, however, $MgCl_2$ had a positive one. Curing by supercritical $CO_2$ fluid gave a conspicuous enhancement in the performances of cement-bonded particleboards compared to conventional curing. $MgCl_2$ 3%-added PB particle had the highest properties, and $MgCl_2$ 1%-added Korean pine particle had the second class with the conditions of cement/wood ratio of 2.7, a small fraction-screened particle and supercritical curing. On the contrary, the composition of non-hammermilled or large fraction-screened particle at cement/wood ratio of 2.2 was poorer. Also, the feasibility for actual use of 3%-added, small PB particle-screened fraction was greatest of all the conventional curing treatments. Relative superiority of supercritical curing vs. conventional curing at dimensional stability was not so apparent as in strength properties. Through the thermogravimetric analysis, it was ascertained that the peak of a component $CaCO_3$ was highest, and the two weak peaks of calcium silicate hydrate and ettringite and $Ca(OH)_2$ were present in supercritical treatment. Accordingly, it was inferred that the increased formation of carbonates in board contributes to strength enhancement.

  • PDF

Behavior Characteristics of Cement Bentonite Impervious Walls Related to Mixing Methods and Curing Time (강화벤토나이트 차수벽체의 배합방법 및 양생일에 따른 거동 특성)

  • Hwang, Jungsoon;Kim, Seungwook;Jung, Jungi;Lee, Seungjoo;Oh, Byeungsam;Baek, Seungcheol
    • Journal of the Korean GEO-environmental Society
    • /
    • v.17 no.12
    • /
    • pp.45-54
    • /
    • 2016
  • In this study, the construction method of new underground continuos impervious wall that the bentonite slurry keeps the stability of excavated trench and the mixture of cement and bentonite plays a role as a constituent of impervious wall in the trench. The merit of homogeneity of the method so called as a cement-bentonite slurry wall enables to accurately make an estimation of hydraulic conductivity of the walls compared with that by other general grouting methods and to verify their waterproof efficiency without difficulty at the design stage. The use of cement-bentonite slurry walls for the containment of groundwater flow has also proven a cost-effective impervious wall technology by employing the simple combination of construction equipments and easy and fast construction procedures. The engineering characteristics of cement-bentonite impervious wall obtained by carrying out the laboratory experiments under various conditions. This study reveals the effect of variation of constituent materials and their mixing methods (Water-Cement-Bentonite) on the engineering characteristics of a composition. Also, this study makes some recommendations on the optimum mixing ratio and mixing sequence for the best quality at the site. That is the most important factors to estimate the construction cost and design of the technique. The comparison is lastly made to evaluate the effect of ordinary Portland and blast furnace slag cement as a bonding material on the behavior of impervious walls.

Application of Waste Foundry Sand to Concrete-Based Product Having Low Water Cement Ratio (낮은 W/C비를 갖는 콘크리트 제품에 대한 폐주물사의 적용)

  • 이대경;김동주;조홍준;김진만
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.79-84
    • /
    • 2001
  • Because the WFS(Waste Foundry Sand), by-product of a casting factory, is generally a smaller particle than a fine aggregate, it has a bad influence on quality of concrete. Especially, the grading of aggregate is a very important factor in the case of concrete-based products having low water cement ratio manufactured by vibration and pressing method. Therefore, it is necessary to use WFS with the suitable grading of aggregate that it don't has a bad Influence on the quality of concrete-based products. This study investigated the suitable using proportion of WFS by means of the composition method of aggregate suggested by Driscoll. The results showed that it was desirable to use 10% of WFS since higher strength was developed with that amount.

  • PDF

A Hydration Model for Blended Concrete utilizing Secondary Cementitious Powders (혼화재를 사용한 콘크리트의 수화모델)

  • Noh Jea Myoung;Byun Keun Joo;Song Ha-Won
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.140-143
    • /
    • 2004
  • Heat of hydration of concrete under different curing temperatures can be characterized with knowledge of the thermal activity, the heat rate at the reference temperature, and the total heat of hydration of the mixture. The so-called multi-component hydration model incorporates the effect of following variables: cement chemical composition, cement fineness, secondary cementitious powders, mixture proportions, and concrete properties. However, the model does not consider the use of silica fume as a secondary cementitious powder. Therefore, the model that quantifies the heat of hydration due to the use of silica fume is needed. In this thesis, the effects of silica fume on heat of hydration are evaluated and the influence on the heat of hydration are also quantified to be included in the model, so that the analysis using modified multi-component hydration model for silica fume concrete provides more accurate results than normal concrete.

  • PDF

A Study on the Chloride Ion Diffusion Coefficient of Concrete by Submergence in Salt Water (침적시험에 의한 콘크리트의 염소이온 확산계수 평가)

  • 김동석;양승규;정연식;유재상;이종열;본간건일
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.297-300
    • /
    • 2003
  • A chloride is an important deteriorating factor which governs the durability of the reinforced-concrete structures under marine environments. Also, the main penetration mechanism of chloride ion into concrete is a diffusion phenomenon. In this study, It is evaluated the diffusion coefficient of chloride ion in non-steady state by Fick's second law. Submergence method in salt water carried out in this experiment. Two types of cement which is different in mineral composition were used. In addition, the effect of mineral admixtures of blast-furnace slag and meta-kaolin was studied. In conclusion, the diffusion coefficient of chloride ion is much affected according to cement type and mineral admixtures, also, it is proved that meta-kaolin as well as blast-furnace slag is effective in preventing penetration of chloride ion.

  • PDF

Crystallization of the Liquid Phase in Portland Cement Clinker (Effects of $K_2O$ and MgO) (포틀랜드시멘트 클링커융액의 결정화에 관한 연구($K_2O$와 MgO의 영향))

  • 한기성;문정연;김용국
    • Journal of the Korean Ceramic Society
    • /
    • v.19 no.3
    • /
    • pp.236-240
    • /
    • 1982
  • The crystallization of melts with similar composition of Portland cement liquid containing 0-5% $K_2O$ was studied by differential thermal and isothermal reaction. The devitrification of melts was occured in stages, the recognizable amount of CaO was appered at the first step, then proto-C3A was crystallized. The latter showed to occur in both cubic C3A and Ca-ferrite crystallization. Batches lost remarkable amounts of $K_2O$ as a result of volatilization during melting and the solubility of $K_2O$ in the melts was unstable.

  • PDF

Strength Characteristics of Rammed Earth Using Hwangtoh Binder

  • Hwang, Hey-Zoo;Yang, Jun-Hyuk
    • Journal of the Korea Institute of Building Construction
    • /
    • v.13 no.1
    • /
    • pp.1-9
    • /
    • 2013
  • There has recently been a great deal of research into the appropriate building materials for eco-friendly construction. In the field of earth architecture, there have been walls made of pure earth or with rammed earth including a small amount of cement. The purpose of the study is to investigate the possibility increasing compressive strength through a more eco-friendly composition by using Hwangtoh binder rather than cement to increase the strength performance of rammed earth. It was found that the more the ratio of binder was increased, the more the strength was increased, but enhancement did not increase noticeably in the lower part that did not compact completely, and proper height to pour earth is 200 mm. When stone dust was added, compressive strength was lower than when adding fine aggregate and coarse aggregate, but a finer surface texture was provided.

Improving Quality of Eco-Friendly Mortar using Blast Furnace Slag and Recycled Aggregate Depending on Replacement Ratio of Desulfurized Gypsum (고로슬래그 미분말과 순환잔골재를 사용하는 친환경 모르타르에 탈황석고에 의한 품질향상)

  • Lu, Liang Liang;Baek, Byung Hoon;Han, Cheon Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.11a
    • /
    • pp.148-149
    • /
    • 2014
  • The aim of this research is to contribute on investment of less cement mortar or concrete in normal strength range using additional hydration of BS with stimulating effect of FGD and OPC based on the previous research result of the BS and RFA using cement mortar. As a test, the composition for normal strength range of mortar was evaluated with 0, 10, and 20 % of FDA and 0, 20 % of OPC replacement.

  • PDF

Characteristics of Adiabatic Temperature Rise for Concrete according to FA Cement and CGS Replacement Rate (FA시멘트 및 CGS 치환율에 따른 콘크리트의 단열온도상승 특성)

  • Baek, Sung-Jin;Hu, Yun-Yao;Kim, Su- Hoo;Han, Jun-Hui;Yoon, Chee Whan;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.04a
    • /
    • pp.117-118
    • /
    • 2022
  • In this study, adiabatic temperature rise of concrete depending on binder compositions and CGS contents is studied to provide informations for CGS low-heating aggregate and mixture designs for upper and lower placement lifts. Test nresults indicate that it is desirable to apply the combination of binders between top and bottom lift. For top lift, SESC or ESC is recommended, and for bottom lift, FAC+CGS 50 % is good for material composition.

  • PDF

Basic Characterization of Resource-recycling Secondary Products of Cement by Using Sludge Solids as The Main Material (회수수 슬러지 고형분을 주재료로 한 자원순환형 시멘트 2차 제품 생산의 기초적 특성 평가)

  • Kim, Min-Sung;Hong, Sung-Jun;Kim, Young-Jin;Ryu, Dong-Woo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.11a
    • /
    • pp.118-119
    • /
    • 2021
  • In this study, we confirmed the basic characteristics of paste and mortar 1:1, 1:2, 1:3 composition using concrete sludge solid content for the purpose of developing a resource-recycling cement secondary products. The 1:2 mortar formulation showed the best compressive strength. The steam curing strength is superior in the order of C20, BS40, BS20 and Control. it is judged that the FA combination is not suitable.

  • PDF