• Title/Summary/Keyword: cement based matrix

Search Result 79, Processing Time 0.021 seconds

Evaluation and improvement of the stabilization process of the MSW Incinerator fly ash into cement (시멘트를 이용한 소각비산회의 안정화공정에 따른 문제점과 해결방안)

  • 배해룡
    • Journal of environmental and Sanitary engineering
    • /
    • v.16 no.2
    • /
    • pp.63-70
    • /
    • 2001
  • This study was initiated to evaluate and resolve the potential problems caused as the MSWI(Municipal Solid Waste Incinerator) fly ash were stabilized and solidified into the cement. The physical and chemical properties of fly ashes (K and M) used in this study were fixed according to the operating conditions of the incineration plant. The compressible strength of the solidified matrix used in this study were measured at 7, 28, and 56 curing days, respectively, to evaluate the stability of the solidified matrix, which were further analyzed by XRD and SEM. The experimental results obtained in this study showed that the relatively long hours of curing periods were needed to solidify the fly ash. The solidified matrix containing K ash had the high and excellent compressible strength of $200{\;}kg/\textrm{cm}^2$, after 56 curing days, but was not good enough in appearance. The analytical data by SEM confirmed that the alkaline Na and K, which are highly dissolved in water, were included in the fly ash and evenly distributed into the exterior surface of the solidified matrix. Whereas, the solidified matrix containing M ash never showed such a compressible strength as shown in the K ash due to the severe fracture, even as early as 7 curing days. Based on its XRD analysis, it appeared that both $C_2S$ and $C_3S$ highly related to the compressible strength were not crystallyzed into the solidified matrix. However, the compressible strength of the solidified and cemented M ash was remarkably improved by 100 times, after the alkalinity was washed out, which indicated that it is equivalent to 30 to 40g per one kg of fly ash.

  • PDF

Density and Strength Properties of according to the Gypsum replacement of Lightweight Matrix based on Blast Furnace Slag (고로슬래그 기반 석고를 사용한 경량 경화체의 밀도 및 강도 특성)

  • Kim, Weon-Jeong;Lee, Seung-Ho;Park, Sun-Gyu;Lee, Sang-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.05a
    • /
    • pp.169-170
    • /
    • 2015
  • This study is the experiment for manufacturing the Lightweight non-cement matrix based on the blast furnace slag, paper ash. Materials like cement and blowing agent in foamed concrete is replaced by by-products fro blast furnace slag and paper ash. Further, the experiment was performed by replacing alkali with nature gypsum and α type gypsum by (0, 5, 10, 15, 20) of weight of alkali (wt.%) in order to reduce the amount of expensive alkali-activator. Consequently, in the case of the density, plain showed the lowest density and it seems that specimen adding nature gypsum 5% has the best compressive strength and flexural strength. It is detemined that the strength is lowered in accordance with the α type gypsum replacement ratio is higher. The research that it can supplement the further intensity seems to be needed.

  • PDF

The evaluation of Mechanical properties of Strain Hardening Cement-based composites manufactured at batcher plant (배처플랜트에 의해 제조된 SHCC의 역학적 성능 평가에 관한 연구)

  • Lim, Chang-Hyuck;Kim, Young-Sun;Kim, Young-Duck;Jeong, Jae-Hong;Lee, Seung-Hoon;Kim, Gyu-Yong
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2009.05b
    • /
    • pp.93-96
    • /
    • 2009
  • This study is to examine a change of quality and a material performance of fiber reinforced cement composite for mass production. It is necessary to make Strain-hardening cementitious composite(SHCC) by batcher plant for ready-mixed concrete and use the performance of SHCC which made based on laboratory level. This study makes a comparative performance of press and mechanics that is the property of Strain-hardening by direct tension. In case of making by batcher plant. This experiment has demonstrated that even if it takes long after being mixed small and compared with the one which made based on laboratory, it has a tendency to be dissatisfied with fiver's dispersion and lower its performance of Strain-hardening. The reason why the material performance of SHCC for mass production went down is through SHCC that mixed sometimes matrix's viscosity and fiber's dispersion.

  • PDF

Design and Constructibility of an Engineered Cementitious Composite Produced with Cement-based Mortar Matrix and Synthetic Fibers (시멘트계 모르타르 매트릭스를 활용한 섬유복합재료 ECC(Engineered Cementitious Composite)의 설계와 시공 성능)

  • Kim, Yun-Yong
    • Composites Research
    • /
    • v.20 no.2
    • /
    • pp.21-26
    • /
    • 2007
  • This paper summarizes the design procedure and constructibility of an ECC (Engineered Cementitious Composite), which is a synthetic fiber-reinforced composite produced with the Portland cement-based mortar matrix. This study employs a stepwise method to develop useful ECC in construction field, which possesses different fluid properties to facilitate diverse types of processing (i.e., self-consolidating or spray processing). To control the rheological properties of the composite, the aggregates and reinforcing fibers were initially selected based on micromechanical analysis and steady-state cracking theory. The stability and consequent viscosity of the suspensions were then mediated by optimizing the dosage of the chemical and mineral admixtures. The rheological properties altered through this approach were revealed to be effective in obtaining ECC-hardened properties, represented by pseudo strain-hardening behavior in uniaxial tension, allowing the readily achievement of the desired function of the fresh ECC.

Mixing and Compressive Strength Characteristics of Steel Cord and PVA Hybrid Fiber Reinforced Cement-Based Composites (Steel Cord와 PVA 혼합섬유 보강 고인성 시멘트 복합체의 비빔 및 압축강도 특성)

  • Yun Hyun Do;Yang Il Seung;Han Byung Chan;Hiroshi Fukuyama;Cheon Esther;Moon Youn Joon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.28-31
    • /
    • 2004
  • This paper discusses the role of micro and macrofibers in the workability, compressive strength, and failure of cementitious composites. Workability(flow), compressive strength, splitting strength and fracture mechanism of hybrid fiber reinforced cement composites(HFRCC) have been investigated by means of Korean Standard (KS). The specific blend pursued in this investigation is a combination of polyvinyl alcohol(PVA) and steel cord. It was demonstrated that a hybrid combination of steel and PVA enhances fiber dispersion compared to only steel cord reinforced cement composites and that the brittle and wide cracking was much reduced in HFRCC as expected because in the matrix containing the PVA fiber around the steel cord, a multiple microcracking occurred and the steel cord could sufficiently work for bridging the cracked surface.

  • PDF

Strength Property of Ternary System Non-Cement Matrix according to the Curing Method (3성분계 무시멘트 경화체의 양생방법에 따른 강도특성)

  • Lee, Jin-Woo;Lee, Sang-Soo
    • The Journal of the Korea Contents Association
    • /
    • v.14 no.4
    • /
    • pp.389-396
    • /
    • 2014
  • This study was conducted as the basic research for the replacement of Blast Furnace Slag, Red Mud, Silica Fume, etc., with cement as a solution to the problems arising from the global warming caused by the generation of $CO_2$, and conducted the experimental review to examine the feasibility of matrix having properties identical to those of cement by using the Blast Furnace slag, Red mud, Silica fume, and alkali-activator. For this, by using the the inorganic binder, such as Blast Furnace Slag, Red Mud, Silica Fume, etc., and NaOH, $Na_2SiO_3$ and others as the cement substitute material, the strength characteristic according to the mixture time variation was performed in the tentative experiment. Based on the preceding experiment, this study performed the experiment to analyze the strength properties of hardener through the curing by air-dry temperature, curing by temperature in water, coating curing, and Korean paper curing. For the water curing at $80^{\circ}C$, the compressive strength and flexural strength were found to be the most excellent at the age of the 28th day, and furthermore, it was found that the non-cement hardener could be made, which is considered to affect the production of eco-friendly concrete.

FIXATION OF LEAD CONTAMINANTS IN Pb-DOPED SOLIDIFIED WASTE FORMS

  • Lee, Dong-Jin;Chung, David;Hwang, Jong-Yeon;Choi, Hyun-Jin
    • Environmental Engineering Research
    • /
    • v.12 no.3
    • /
    • pp.101-108
    • /
    • 2007
  • Fixation of lead contaminants in the solidification/stabilization using Portland cement has been investigated by X-ray diffraction, scanning electron microscopy and compressive strength. The presence of lead was observed to produce lead carbonate sulfate hydroxide ($Pb_4SO_4(CO_3)_2(OH)_2$), lead carbonate hydroxide hydrate ($3PbCO_3{\cdot}2Pb(OH)_2{\cdot}H_2O$) and two other unidentified lead salts in cavity areas and was observed to significantly retard the hydration of cement. By 28 days, howevere, the XRD peaks of most of the lead precipitates have essentially disappeared with only residual traces of lead carbonate sulfate hydroxide and lead carbonate hydroxide hydrate evident. After 28 days of curing, hydration appears well advanced with a strong portlandite peak present though C-S-H gel peaks are not particularly evident. Lead species produced with the dissolution of lead precipitates are fixed into the cement matrix to be calcium lead silicate hydrate (C-Pb-S-H) during cement-based solidification.

Numerical modelling of the pull-out response of inclined hooked steel fibres

  • Georgiadi-Stefanidi, Kyriaki;Panagouli, Olympia;Kapatsina, Alexandra
    • Advances in concrete construction
    • /
    • v.3 no.2
    • /
    • pp.127-143
    • /
    • 2015
  • Steel fibre reinforced concrete (SFRC) is an anisotropic material due to the random orientation of the fibres within the cement matrix. Fibres under different inclination angles provide different strength contribution of a given crack width. For that the pull-out response of inclined fibres is of great importance to understand SFRC behaviour, particularly in the case of fibres with hooked ends, which are the most widely used. The paper focuses on the numerical modelling of the pull-out response of this kind of fibres from high-strength cementitious matrix in order to study the effects of different inclination angles of the fibres to the load-displacement pull-out curves. The pull-out of the fibres is studied by means of accurate three-dimensional finite element models, which take into account the nonlinearities that are present in the physical model, such as the nonlinear bonding between the fibre and the matrix in the early stages of the loading, the unilateral contact between the fibre and the matrix, the friction at the contact areas, the plastification of the steel fibre and the plastification and cracking of the cementitious matrix. The bonding properties of the fibre-matrix interface considered in the numerical model are based on experimental results of pull-out tests on straight fibres.

In vivo wear determination of novel CAD/CAM ceramic crowns by using 3D alignment

  • Aladag, Akin;Oguz, Didem;Comlekoglu, Muharrem Erhan;Akan, Ender
    • The Journal of Advanced Prosthodontics
    • /
    • v.11 no.2
    • /
    • pp.120-127
    • /
    • 2019
  • PURPOSE. To determine wear amount of single molar crowns, made from four different restoratives, and opposing natural teeth through computerized fabrication techniques using 3D image alignment. MATERIALS AND METHODS. A total of 24 single crowns (N = 24 patients, age range: 18 - 50) were made from lithium disilicate (IPS E-max CAD), lithium silicate and zirconia based (Vita Suprinity CAD), resin matrix ceramic material (Cerasmart, GC), and dual matrix (Vita Enamic CAD) blocks. After digital impressions (Cerec 3D Bluecam, DentsplySirona), the crowns were designed and manufactured (Cerec 3, DentsplySirona). A dualcuring resin cement was used for cementation (Variolink Esthetic DC, Ivoclar). Then, measurement and recording of crowns and the opposing enamel surfaces with the intraoral scanner were made as well as at the third and sixth month follow-ups. All measurements were superimposed with a software (David-Laserscanner, V3.10.4). Volume loss due to wear was calculated from baseline to follow-up periods with Siemens Unigraphics NX 10 software. Statistical analysis was accomplished by Repeated Measures for ANOVA (SPSS 21) at = .05 significance level. RESULTS. After 6 months, insignificant differences of the glass matrix and resin matrix materials for restoration/enamel wear were observed (P>.05). While there were no significant differences between the glass matrix groups (P>.05), significant differences between the resin matrix group materials (P<.05) were obtained. Although Cerasmart and Enamic were both resin matrix based, they exhibited different wear characteristics. CONCLUSION. Glass matrix materials showed less wear both on their own and opposing enamel surfaces than resin matrix ceramic materials.

Efficacy of supplementary cementitious material and hybrid fiber to develop the ultra high performance hybrid fiber reinforced concrete

  • Sharma, Raju;Bansal, Prem Pal
    • Advances in concrete construction
    • /
    • v.8 no.1
    • /
    • pp.21-31
    • /
    • 2019
  • The rich recipe of ultra high performance concrete (UHPC) offers the higher mechanical, durability and dense microstructure property. The variable like cement/sand ratio, amount of supplementary cementitious material, water/binder ratio, amount of fiber etc. alters the UHPC hardened properties to any extent. Therefore, to understand the effects of these variables on the performance of UHPC, inevitably a stage-wise development is required. In the present experimental study, the effect of sand/cement ratio, the addition of finer material (fly ash and quartz powder) and, hybrid fiber on the fresh, compressive and microstructural property of UHPC is evaluated. The experiment is conducted in three phases; the first phase evaluates the flow value and strength attainment of ingredients, the second phase evaluates the efficiency of finer materials (fly ash and quartz powder) to develop the UHPC and the third phase evaluate the effect of hybrid fiber on the flow value and strength of ultra high performance hybrid fiber reinforced concrete (UHP-HFRC). It has been seen that the addition of fly ash improves the flow value and compressive strength of UHPC as compared to quartz powder. Further, the usage of hybrid fiber in fly ash contained matrix decreases the flow value and improves the strength of the UHP-HFRC matrix. The dense interface between matrix and fiber and, a higher amount of calcium silicate hydrate (CSH) in fly ash contained UHP-HFRC is revealed by SEM and XRD respectively. The dense interface (bond between the fiber and the UHPC matrix) and the higher CSH formation are the reason for the improvement in the compressive strength of fly ash based UHP-HFRC. The differential thermal analysis (DTA/TGA) shows the similar type of mass loss pattern, however, the amount of mass loss differs in fly ash and quartz powder contained UHP-HFRC.