• Title/Summary/Keyword: cellulose II

Search Result 197, Processing Time 0.028 seconds

Direct Conversion for the Production of 5-HMF from Cellulose over Immobilized Acidic Ionic Liquid Catalyst with Metal Chloride (고정화 산성 이온성 액체 촉매와 금속염화물 촉매를 이용한 셀룰로우스의 5-HMF로의 직접 전환 연구)

  • Park, Yong Beom;Choi, Jae Hyung;Lim, Han-Kwon;Woo, Hee-Chul
    • Clean Technology
    • /
    • v.20 no.2
    • /
    • pp.108-115
    • /
    • 2014
  • Various metal chlorides and acid catalysts in ionic liquid solvent were investigated to directly convert cellulose into 5-hydroxymethylfurfural (5-HMF). Metal chlorides containing Sn(II), Zn(II), Al(III), Fe(III), Cu(II), and Cr(III) were used and acidic ionic liquid immobilized on silica gel as an acid catalyst and commercial acid catalysts (sulfuric acid, chloric acid, Amberlyst-15,DOWEX50x8) were used for comparison studies. The acid strength and amount of acid catalysts were probed with Hammett indicator. The selectivity and yield of 5-HMF were determined with reaction temperature, reaction time and catalyst ratio. A catalyst containing $CrCl_3-6H_2O$ and $SiO_2-[ASBI]HSO_4$ showed the highest selectivity and it was found that this catalyst had higher activity than commercial solid acid catalysts such as Amberlyst-15 and DOWEX50x8. The selectivity of 5-HMF appeared to be mainly dependent on the acid strength and catalyst ratio, it was found that levulinic acid was produced from 5-HMF by rehydration.

Properties of Regenerated Cellulose Films Prepared from the Tunicate Styela clava (미더덕 껍질을 이용한 셀룰로오스 필름의 제조 및 특성)

  • Jung, Young-Jin
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.41 no.4
    • /
    • pp.237-242
    • /
    • 2008
  • The tunic of Styela clava(SCT) consists of a proteoglycan network. Regenerated cellulose films were prepared by solution casting and coagulation of SCT in N-methylmorpholine-N-oxide(NMMO)/$H_2O$(87/13 wt%). The crystalline structure of powdered SCT was primarily that of cellulose I. The crystalline structure of SCT films exhibited a cellulose II structure, similar to that of viscose rayon. Physical characterization of SCT films and fibers revealed an intrinsic viscosity($\eta$) of 6.35 dL/g, average molecular weight($M_w$) of 423,000 g/M, and fiber density of 1.50 $g/cm^3$ with a moisture regain and water absorption of 10.20% and 365%, respectively. The results were similar to those of cellulose films regenerated from wood pulp. Films prepared with 6 wt% SCT exhibited strong tensile strength, high water absorption, and a greater degree of elongation. Scanning electron micrographs(SEM) of film cross-sections showed a layered, sponge-like structure.

The Separation, Purification and Utilization of Wood Main Components by Steam Explosion in Low Pressure (II) - Characterization and Utilization of Separated Wood Polysaccharides - (저압(低壓) 폭쇄처리(爆碎處理)에 의한 목재주성분(木材主成分)의 분리(分離)·정제(精製) 및 이용(利用) (II) - 탄수화물(炭水化物)의 화학적(化學的) 성상(性狀)및 이용(利用) -)

  • Eom, Chan-Ho;Eom, Tae-Jin;Lee, Jong-Yoon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.24 no.2
    • /
    • pp.20-25
    • /
    • 1996
  • Wood chips of oak(Quercus mongolica) and larch(Larix leptolepis) were exploded with the optimum condition. Main components of exploded wood were separated with hot hot water and methanol. The hemicelluloses were purified from hot water extracts and alditol complexs were prepared from purified hemicellulose. And also, cellulose nitrate was prepared from extractive residue and characterized. The results can be summarized as follows. 1. Amounts of carbohydrate(72~79%) in the crude hemicellulose of larch wood was more than those of oak wood(55~66%). 2. The crude hemicelluloses were mainly composed of oligosaccharides in oak wood but those in larch wood contained about 50% monosaccharides. 3. Decolorization of hemicellulose was successful with activated charcoal and ion-exchange resin treatment. The alditol yields were 56.3~82.9%. 4. The degree of substitution(D.S.) of cellulose nitrate was 1.95~2.87 and it showed a good acetone solubility.

  • PDF

Studies on Milk Protein of Korean Cattle I. Fractionation of Milk Protein on DEAE-Cellulose (한우유(韓牛乳)의 단백질(蛋白質)에 관(關)한 연구(硏究) 제(第)1보(報) DEAE-Cellulose에 의(依)한 한우유단백질(韓牛乳蛋白質)의 분별(分別))

  • Kim, Y.K.;Chang, J.I.
    • Korean Journal of Food Science and Technology
    • /
    • v.6 no.2
    • /
    • pp.75-78
    • /
    • 1974
  • An experiment has been carried out in order to analyze the main components of Korean Cattles' milk, and fractionate the milk protein by DEAE-cellulose column. The results obtained were summarized as follow. 1) The average values of specific gravity, pH and acidity of Korean Cattles milk which were negative in alcohol test were 1,036, 6.4 and 0.21, respectively. 2) The average values of total solids, solids-not-fat, protein, lactose and ash contents of Korean Cattles milk were 11.61%, 9.53%, 2.08%, 3.99%, 4.76% and 0.86%, respectively. 3) Distribution of casein, whey protein, N.P.N., protein precipitated in 12% TCA, lactoglobulin and lactalbumin contents of the milk were 3.07%, 1.13%, 0.10%, 4.06%, 0.34% and 0.66%, respectively. 4) Acid casein obtained from Korean Cattles milk was fractionated into four fractions on DEAE-cellulose column with 0.005M tris-citrate buffer containing 6M urea, pH 8.6, and the ratio of the fraction I, II, III and IV was 3.24%, 52.67%, 26.22% and 17.87%, respectively. 5) Whey protein obtained from Korean Cattles milk was also fractionated into four fractions on DEAE-cellulose column with 0.04M phosphate buffer, pH 5.8, and the ratio of the fraction I, II, III and IV was 41.74%, 10.17%, 1.50% and 46.59%, respectively.

  • PDF

Description of Cellobiohydrolases Ce16A and Ce17A from Trichoderma reesei Using Langmuir-type Models

  • Kim, Dong-Won;Hong, Young-Gwan
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.6 no.2
    • /
    • pp.89-94
    • /
    • 2001
  • The binding of cellobiohydrolases to cullulose is a crucial initial step in cellulose hydrolysis. In the search for a detailed understanding of the function of cellobiohydrolases, much information concerning how the enzymes and their constituent catalytic and cellulose-binding changes during hydrolysis is still needed. The adsorption of purified two cellobiohydrolases (Ce17A and Ce16A) from Trichoderma reesei cellulase to microcrystalline cellulose has been studied. Cellobiohydrolase II (Ce16A) does not affect the adsorption of cellobiohydrolase I (Ce17A) significantly, and there are specific binding sites for both Ce17A and Ce16A. The adsorption affinity and tightness of the cullulase binding domain (CBD) for Ce17A are larger than those of the CBD for Ce16A. The CBD for Ce17A binds more rapidly and tightly to Avicel than the CBD for Ce16A. The decrease in adsorption observed when the two cellobihydrolases are studied together would appear to be the result of competition for binding sites on the cellulose. Ce17A competes more efficiently for binding sites than Ce16A. Competition for binding sites is the dominating factor when the two enzymes are acting together, furthermore adsorption to sites specific for Ce17A and Ce16A, also contributes to the total adsorption.

  • PDF

Characterization of TNP-cellulose as Substrate for Cellulase Assay (TNP-cellulose의 섬유소 분해효소 활성도 측정을 위한 기질로서의 특성)

  • Maeng, Jeong-Seob;Nam, Yoon-Kyu;Choi, Woo-Young
    • Korean Journal of Agricultural Science
    • /
    • v.21 no.2
    • /
    • pp.142-147
    • /
    • 1994
  • Characteristics of TNP-cellulose which prepared from carboxymethyl cellulose powder, CM32, as substrate for cellulase activity assay were investigated. Enzymatic hydrolysis of TNP-cellulose occured on the cellulose moiety but not on amide bonds, following Michaelis-Menten kinetics. Three cellulase preparations from Trichoderma viride, Aspergillus niger, and Cellulomonas sp. were tested for their pH and temperature dependences and compared with the method determining the increase in reducing power. The enzyme activity was found to have the same temperature range in both methods, however the pH range was broadened in the case of using TNP-cellulose as substrate. The colorimetric method for cellulase assay using TNP-cellulose as substrate was compared with the other methods: one based on determination of the increase in reducing power; and the other based on determining the decrease in viscosity of Na-CM-cellulose solution. The activities measured by the colorimetric method showed a linear correlation with the enzyme concentration of certain range in all three enzymes tested, and the activity values were proportional to those obtained from the other methods. Depending on the enzyme, however, the activity values from this method were not always in proportion to those from the viscometric method. suggesting that this method was not specific for determination of the endo-type cellulase.

  • PDF

Recycling of Waste Paper with Alkaline Cellulolytic Enzyme (II) - Purification of alkaline cellulolytic enzymes and characteristics of reaction with fiber - (호알칼리성 목질분해 효소를 이용한 폐지 재생(제2보) - 알칼리성 목질분해 효소 정제 및 섬유 반응 특성 -)

  • 강석현;이중명;박성배;엄태진
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.36 no.1
    • /
    • pp.24-29
    • /
    • 2004
  • Alkaline cellulolytic enzymes from cultured medium of Coprinus cinereus 2249 were purified with gel and ion-exchange chromatography and characteristics of those enzyme proteins were investigated. A fiber length distribution and a crystallinity of cellulose and sugar composition of enzyme treated Mixed Office Wastepaper(MOW) and Unbleached Kraft Pulp(UKP) were analysed. The conclusion could summarized as follows; \circled1 Alkaline and acidic, endo- and exo-glucanases were purified from cultured medium of Coprinus cinereus 2249. \circled2 The approximate molecular weight of alkaline endo-glucanase was 42 kDa, and also that of alkaline exo-glucanase was 50 kDa. A fiber length distribution and a crystallization of cellulose and sugar composition of enzyme treated MOW and UKP were not so much changed with original paper and pulp.