• 제목/요약/키워드: cellulase digestibility

검색결과 42건 처리시간 0.018초

Effects of Cellulase Supplementation on Nutrient Digestibility, Energy Utilization and Methane Emission by Boer Crossbred Goats

  • Wang, Lizhi;Xue, Bai
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제29권2호
    • /
    • pp.204-210
    • /
    • 2016
  • This study examined the effect of supplementing exogenous cellulase on nutrient and energy utilization. Twelve desexed Boer crossbred goats were used in a replicated $3{\times}3$ Latin square design with 23-d periods. Dietary treatments were basal diet (control, no cellulase), basal diet plus 2 g unitary cellulase/kg of total mixed ration dry matter (DM), and basal diet plus 2 g compound cellulase/kg of total mixed ration DM. Three stages of feeding trials were used corresponding to the three treatments, each comprised 23 d, with the first 14 d as the preliminary period and the following 9 d as formal trial period for metabolism trial. Total collection of feces and urine were conducted from the 4th d of the formal trial, and gas exchange measures were determined in indirect respiratory chambers in the last 3 d of the formal trial. Results showed that cellulase addition had no effect (p>0.05) on nutrient digestibility. Dietary supplementation of cellulase did not affect (p>0.05) N intake and retention in goats. Gross energy (GE) intake, fecal energy and urinary energy excretion, heat production were not affected (p>0.05) by the cellulase supplementation. Total methane emission (g/d), $CH_4$ emission as a proportion of live weight or feed intake (DM, organic matter [OM], digestible DM or digestible OM), or $CH_4$ energy output ($CH_4$-E) as a proportion of energy intake (GE, digestible energy, or metabolizable energy), were similar (p>0.05) among treatments. There was a significant (p<0.001) relationship between $CH_4$ and live weight (y = 0.645x+0.2, $R^2$ = 0.54), $CH_4$ and DM intake (y = 16.7x+1.4, $R^2$ = 0.51), $CH_4$ and OM intake (y = 18.8x+1.3, $R^2$ = 0.51) and $CH_4$-E and GE intake. Results from this study revealed that dietary supplementation of cellulase may have no effect on nutrient digestibility, nitrogen retention, energy metabolism, and methane emission in goat.

Effects of Cellulase and Brewers' Grains Addition on the Fermentation Quality and Nutritive Value of Barley Straw Silage

  • Ridla, M.;Uchida, S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제10권6호
    • /
    • pp.575-580
    • /
    • 1997
  • Two experiments were carried out to evaluate the effects of cellulase and brewers' grains addition on improvement of the fermentation quality and the nutritive value of barley straw silages made from dried or fresh straw. In Exp. I : 1 kg dried barley straw + 2 kg wet brewers' grains + 0 (I-0), 2 (I-2), 4 (I-4), 6 (I-6), and 8 (I-8) g of cellulase. In Exp. II : 2 kg fresh barley straw + 2 kg wet brewers' grains + 0 (II-0), 2 (II-2), 4 (II-4), 6 (II-6), and 8 (II-8) g of cellulase. Each prepared material was ensiled into vinyl bag silos (5 L capacity) and stored for 10 (Exp. I) or 7 (Exp. II) months at $21^{\circ}C$. The fermentation quality and nutritive value of barley straw silages produced were markedly improved by mixing them with wet brewers' grains, on the other hand the effect of cellulase addition on the fermentation and reduction of the cell wall components in the silos at ensiling more effectively occurred at low dry matter silages rather than at the high ones. All silages in both Exp. I and II were found well preserved as indicated by their low pH and high lactic acid concentration. Cellulase treated silages had a lower pH (p<0.05) and a higher lactic acid concentration (p<0.05) than those of without cellulase addition. NDF, ADF, and (Hemi)cellulose contents of cellulase treated silages reduced (p<0.05) compare to those of the corresponding silage without cellulase. Increasing levels of cellulase addition caused an increase in fermentation quality and reduction of cell wall components. In vitro dry mater digestibility was found similar in all silages. Fermentation quality and nutritive value of barley straw silages were improved by both wet brewers' grains and cellulase addition. Cellulase addition reduced the cell wall components silages, but did not improve the digestibility.

Chemical composition and in vitro digestibility of corn stover during field exposure and the fermentation characteristics of silage prepared with microbial additives

  • Gao, Jun Lei;Wang, Peng;Zhou, Chang Hai;Li, Ping;Tang, Hong Yu;Zhang, Jia Bao;Cai, Yimin
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제32권12호
    • /
    • pp.1854-1863
    • /
    • 2019
  • Objective: To effectively use corn stover resources as animal feed, we explored the chemical composition and in vitro digestibility of corn stover during field exposure and the fermentation characteristics of silage prepared with lactic acid bacteria (LAB) and cellulase. Methods: Corn ears including the cobs and shucks were harvested at the ripe stage. The corn stover was exposed in the field under natural weather conditions. Silages were prepared after 0, 2, 4, 7, 15, 30, and 60 d of exposure. Corn stover was chopped into approximately 1 to 2 cm lengths and then packed into 5 liter plastic silos. The ensiling density was $550.1{\pm}20.0g/L$ of fresh matter, and the silos were kept at room temperature ($10^{\circ}C$ to $25^{\circ}C$). Silage treatments were designed as follows: without additives (control), with LAB, with cellulase, and with LAB+ cellulase. After 45 d of fermentation, the silos were opened for chemical composition, fermentation quality and in vitro digestion analyses. Results: After harvest, corn stover contained 78.19% moisture, 9.01% crude protein (CP) and 64.54% neutral detergent fiber (NDF) on a dry matter (DM) basis. During field exposure, the DM, NDF, and acid detergent fiber (ADF) contents of corn stover increased, whereas the CP and water-soluble carbohydrate contents and in vitro digestibility of the DM and CP decreased (p<0.05). Compared to the control silage, cellulase-treated silage had lower (p<0.05) NDF and ADF contents. The pH values were lower in silage treated with LAB, cellulase, or LAB+cellulase, and lactic acid contents were higher (p<0.05) than those of the control. Silage treated with cellulase or LAB+cellulase improved (p<0.05) the in vitro DM digestibility (IVDMD) compared to that of the control or LAB-treated silage. Conclusion: Corn stover silage should be prepared using fresh materials since stover nutrients are lost during field exposure, and LAB and cellulase can improve silage fermentation and IVDMD.

Comparative Study on the Effects of Combined Treatments of Lactic Acid Bacteria and Cellulases on the Cell Wall Compositions and the Digestibility of Rhodesgrass (Chloris gayana Kunth.) and Italian Ryegrass (Lolium multiflorum Lam.) Silages

  • Ridla, M.;Uchida, S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제12권4호
    • /
    • pp.531-536
    • /
    • 1999
  • This study was conducted to compare the effects of lactic acid bacteria (LAB) or LAB+cellulases on the cell wall compositions and the in vitro dry matter digestibility (IVDMD) of Rhodesgrass (RG) and Italian ryegrass (IRG) silages. LAB (Lactobacillus cassei) at a concentration of $10{\times}10^5\;cfu.g^{-1}$ fresh forage was added to all ensiling samples (except the untreated control) of RG and IRG. The cellulases used were Acremoniumcellulase (A), Meicelase (M) or a mixture of both (AM). Each cellulase was applied at levels of 0.005, 0.01 and 0.02 % fresh sample. The samples were incubated at 20, 30 and $40^{\circ}C$ for about 2 months of storage. LAB inoculation did not affect cell wall components or IVDMD of both the RG and IRG silages, but LAB+cellulase treatments did. Increasing the amount of cellulase addition resulted in further decreases of cell wall concentrations. This reduction more markedly occurred with cellulases A and AM than it did with cellulase M. Cell wall components losses were higher in the IRG silages than in the RG silages. LAB+cellulase treatments decreased IVDMD of the RG silages, but had no effect on the IRG silages. The different effect of LAB+cellulase treatments on cell wall degradation and IVDMD of the RG and IRG silages suggested that RG contains more structural carbohydrates, which were difficult to degrade with cellulase, than did IRG.

Effects of Enzyme Complex Supplementation to a Paddy-based Diet on Performance and Nutrient Digestibility of Meat-type Ducks

  • Kang, P.;Hou, Y.Q.;Toms, Derek;Yan, N.D.;Ding, B.Y.;Gong, Joshua
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제26권2호
    • /
    • pp.253-259
    • /
    • 2013
  • Paddy rice is rarely used as a feed because of its high fiber content. In this study, two experiments were conducted to study the effects of supplementing an enzyme complex consisting of xylanase, beta-glucanase and cellulase, to paddy-based diets on the performance and nutrient digestibility in meat-type ducks. In the both experiments, meat-type ducks (Cherry Valley) were randomly assigned to four treatments. Treatment 1 was a basal diet of corn-soybean; treatment 2 was a basal diet of corn-paddy-soybean; treatment 3, had enzyme complex added to the corn-paddy-soybean basal diet at levels of 0.5 g/kg diet; and treatment 4, had enzyme complex added to the corn-paddy-soybean diet at levels of 1.0 g/kg diet. The results showed that the enzyme complex increased the ADG, and decreased the ADFI and F/G significantly (p<0.05) in the ducks, and the ADFI for the ducks fed the corn-paddy-soybean diet showed no difference compared to the ducks fed corn-soybean diets at all stages of the experiment (p<0.05). When corn was partially replaced by paddy, the digestibility of CP and NDF was decreased and increased, respectively (p<0.05), and the level of enzyme complex had a significant effect on both CP and NDF digestibility (p<0.05). As for the AME, addition of enzyme complex increased it significantly (p<0.05), but both diet types and levels of enzyme complex had no effect (p>0.05). The outcome of this research indicates that the application of enzyme complex made up of xylanase, beta-glucanase, and cellulase, in the corn-paddy-soybean diet, can improve performance and nutrition digestibility in meat-type ducks.

Effect of tannins and cellulase on growth performance, nutrients digestibility, blood profiles, intestinal morphology and carcass characteristics in Hu sheep

  • Zhao, M.D.;Di, L.F.;Tang, Z.Y.;Jiang, W.;Li, C.Y.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제32권10호
    • /
    • pp.1540-1547
    • /
    • 2019
  • Objective: This study was conducted to evaluate the effects of tannins and cellulase on growth performance, nutrient digestibility, blood profiles, intestinal morphology, and carcass characteristics in Hu sheep. Methods: A total of 48 three-month-old meat Hu sheep ($25.05{\pm}0.9kg$) were blocked based on body weight, and randomly allotted to 4 treatments with 3 replicates of 4 sheep each. The experiment lasted for 80 d, and dietary treatments were as follows: i) CON, control diet; ii) TAN, CON+0.1% tannins; iii) CEL, CON+0.1% cellulase; iv) TAN+CEL, CON+0.1% tannins and 0.1% cellulase. Results: Compared with CON, CEL, and TAN+CEL had greater (p<0.05) final body weight (FBW) and average daily gain but lower (p<0.05) feed conversion ratio, while FBW of TAN+CEL was lower (p<0.05) than that of CEL. The apparent total tract digestibility (ATTD) of dry matter in TAN, CEL, and TAN+CEL groups were higher (p<0.05) than that in CON. CEL and TAN+CEL groups had greater (p<0.05) ATTD of crude fiber compared with TAN and CON, while TAN group had lower (p<0.05) ATTD of crude protein than other treatments. TAN, CEL, and TAN+CEL groups increased (p<0.05) serum globulin and alkaline phosphatase but decreased (p<0.05) albumin/globulin. Serum total protein was greatest for TAN+CEL, intermediate for TAN and CEL and least for CON (p<0.05). TAN+CEL group increased (p<0.05) dressing percentage compared with CON, while the backfat thickness of CEL was lower (p<0.05) than that of CON. The villus height of jejunum and ileum in CEL and TAN+CEL groups were greater (p<0.05) than that in CON, and the crypt depth and villus height: crypt depth of jejunum were increased (p<0.05) in TAN, CEL, and TAN+CEL groups. Conclusion: The addition of tannins and cellulase together promoted nutrient digestion, liver protein synthesis and intestinal development and thus improved growth performance and carcass characteristics.

Effects of Isolated and Commercial Lactic Acid Bacteria on the Silage Quality, Digestibility, Voluntary Intake and Ruminal Fluid Characteristics

  • Ando, Sada;Ishida, M.;Oshio, S.;Tanaka, O.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제19권3호
    • /
    • pp.386-389
    • /
    • 2006
  • Silage is a major component of cattle rations, so the improvement of silage quality by the inoculation of lactic acid bacteria is of great interest. In this study, commercially distributed Lactobacillus plantram and Lactobacillus rhamnousas NGRI 0110 were used for ensilaging of guinea grass. The four treatments used were a control silage, a silage with cellulase addition, a silage with cellulose+L. plantram addition, and a silage with cellulose + NGRI 0110 addition. Silage quality, voluntary intake, nutrient digestibility, and the characteristics of ruminal fluid of wethers were investigated. Silage to which lactic acid bacteria were added showed low pH and acetic acid concentration and the highest lactic acid content. Dry matter and organic matter digestibility were significantly (p<0.05) increased by cellulase addition and significantly (p<0.05) higher values were observed in L. plantram- and NGRI 0110-added silage. Voluntary intake of NGRI 0110-added silage was the highest and that of control silage was the lowest. We concluded that the observed ability of NGRI 0110 to tolerate low pH and to continue lactic acid fermentation in high lactic acid concentration had also occurred in actual ensilaging. The results indicate that the addition of lactic acid bacteria might improve silage quality and increase digestibility and voluntary intake. The potential for improvement by NGRI 0110 was higher than that to be gained by the use of commercially available lactic acid bacteria.

Effects of Combined Treatment of Lactic Acid Bacteria and Cell Wall Degrading Enzymes on Fermentation and Composition of Rhodesgrass (Chloris gayana Kunth.) Silage

  • Ridla, M.;Uchida, S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제11권5호
    • /
    • pp.522-529
    • /
    • 1998
  • This experiment was conducted to study the effects of lactic acid bacteria (LAB) inoculation either alone or in combination with cell wall degrading enzymes on the fermentation characteristics and chemical compositions of Rhodesgrass silage. Over to 1 kg of fresh Rhodesgrass sample a treatment of inoculant LAB with or without addition of an enzyme of Acremoniumcellulase (A) or Meicelase (M) or a mixture of both enzymes (AM) was applied. The treatments were control untreated, LAB-treated (application rate $1.0{\times}10^5cfu/g$ fresh sample), LAB+A 0.005%, LAB+A 0.01%, LAB+A 0.02%, LAB+M 0.005%, LAB+M 0.01%, LAB+M 0.02 %, LAB+AM 0.005%, LAB+AM 0.01%, and LAB+AM 0.02%. The sample was ensiled into 2-L vinyl bottle silo, with 9 silages of each treatment were made. Three silages of each treatment were incubated at 20, 30 and $40^{\circ}C$ for 2-months of storage period. All silages were well preserved with their fermentation quality has low pH values (3.91-4.26) and high lactic acid concentrations (4.11-9.89 %DM). No differences were found in fermentation quality and chemical composition of the control untreated silage as compared to the LAB-treated silage. Combined treatment of LAB+cellulases improved the fermentation quality of silages measured in terms of lower (p < 0.01) pH values and higher (p < 0.05) lactic concentrations than those of LAB-treated silages. Increasing amount of cellulase addition resulted in decrease (p < 0.05) of pH value and increase (p < 0.05) of lactic acid concentration. LAB + cellulase treatments (all cellulase types) reduced (p < 0.01) NDF, ADF and in vitro dry matter digestibility of silages compared with the control untreated silages. The fermentation quality and the rate of cell wall reduction were higher (p < 0.01) in the silages treated with LAB + cellulase A than in the silages treated with either LAB+cellulase M or LAB + cellulase AM. Incubation temperature of $40^{\circ}C$ was likely to be more appropriate environment for stimulating the fermentation of Rhodesgrass silages than those of 20 and $30^{\circ}C$.

Effects of Combined Treatments of Lactic Acid Bacteria and Cell Wall Degrading Enzymes on Fermentation and Composition of Italian Ryegrass (Lolium multiflorum Lam.) Silage

  • Ridla, M.;Uchida, S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제11권3호
    • /
    • pp.277-284
    • /
    • 1998
  • This experiment was carried out to study the effects of lactic acid bacteria (LAB) inoculation and addition of cell wall degrading enzymes on the fermentation characteristics and chemical compositions of Italian ryegrass silage. An inoculant LAB with or without a cell wall degrading enzyme of Acremoniumcellulase (A), or Meicellulase (M) or a mixture of both (AM), was applied to 1 kg of fresh Italian ryegrass sample. The treatments were control untreated, LAB-treated (application rate $10^5$ cfu/g fresh sample), LAB+A 0.005%, LAB + A 0.01%, LAB+A 0.02%, LAB + M 0.005%, LAB + M 0.01%, LAB + M 0.02%, LAB+AM 0.005%, LAB + AM 0.01% and LAB+AM 0.02%. The sample was ensiled into 2-L vinyl bottle silo, with 9 silages of each treatment were made (a total of 99 silages). Three silages of each treatment were incubated at 20, 30 and $40{^{\circ}C}$ for an approximately 2-months storage period. All silages were well preserved as evidenced by their low pH values (3.79-4.20) and high lactic acid concentrations (7.71-11.34% DM). The fermentation quality and chemical composition of the control untreated and the LAB-treated silages were similar, except that for volatile basic nitrogen (VBN) content was lower (p < 0.05) in the LAB-treated silages. LAB + cellulase treatments improved the fermentation quality of silages by decreasing (p < 0.01) pH values and increasing (p<0.01) lactic acid concentrations, in all of cellulase types and incubation temperatures. Increasing amount of cellulase addition resulted in further decrease (p < 0.01) of pH value and increases (p < 0.01) of lactic acid and residual water soluble carbohydrate (WSC) concentrations. LAB + cellulase treatments reduced (p<0.01) NDF, ADF, hemicellulose and cellulose contents of silages compared with both the control untreated and LAB-treated silages. LAB + cellulase treatments did not affect the silage digestibility due to fact of in vitro dry matter digestibility (IVDMD) was similar in all silages. The silages treated with cellulase A resulted in a better fermentation quality and a higher rate of cell wall reduction losses than those of the silages treated with cellulases M and AM. Incubation temperature of $30{^{\circ}C}$ seemed to be more suitable for the fermentation of Italian ryegrass silages than those of 20 and $40{^{\circ}C}$.

The Apparent Digestibility of Corn By-products for Growing-finishing Pigs In vivo and In vitro

  • Guo, Liang;Piao, Xiangshu;Li, Defa;Li, Songyu
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제17권3호
    • /
    • pp.379-385
    • /
    • 2004
  • Two trials in vivo and in vitro were conducted, in vivo to determine the apparent digestibility of gross energy, crude protein, dry matter, acid detergent fiber, neutral detergent fiber and apparent digestible energy in 10 corn by-products. In vivo the diets included one basal corn diet, four corn gluten meal diets, four corn distillers dried grains with solubles diets and two corn distillers dried grains diets using the different methods, 12 crossbred barrows weigh $40{\pm}$1.6 kg were allocated into individual metabolic crate, according to a $6{\times}6$ Latin square design. In vitro using flask technique, filter bag technique and dialysis tubing technique, the digestibilities of gross energy, crude protein and dry matter in corn gluten meal and corn distillers dried grains with solubles were investigated. Pepsin, pancreatin, intestinal fluid, rumen fluid and cellulase were used in incubation. The results showed that correlation coefficient was 0.73 in corn distillers dried grains with solubles between the digestibility of crude protein and acid detergent fiber in vivo (p<0.01); and correlation coefficient was 0.68 in corn distillers dried grains with solubles between the digestibility of gross energy and neutral detergent fiber in vivo (p<0.01). Apparent digestible energy (DE) of corn by-products in pig total tract was predicted by the percentage of crude protein (CP) and the content of gross energy (GE) in feedstuff. The equation: DE=5,601.09+26.69$\times$CP %-0.5904$\times$GE, ($R^2=0.72$). In vitro, filter bag technique was more convenient; furthermore, the digestibility for the treatments (pepsin+pancreatin+rumen fluid and pepsin+pancreatin+cellulase) was better.