• Title/Summary/Keyword: cellulase activities

Search Result 276, Processing Time 0.033 seconds

Studies on the Softening of Strawberry during Circulation and Storage (1) Changes of Cell Wall Components, Protein and Enzymes during Ripening (딸기의 유통.저장시 연화현상에 관한 연구 (1) 세포벽 성분, 단백질 및 효소의 변화)

  • 이광희;김광수;김미현;신승렬;윤경영
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.27 no.1
    • /
    • pp.29-34
    • /
    • 1998
  • This study was investigated to know changes of the cell wall components, cell wall degrading enzyme activities and contents of soluble protein of strawberry during ripening and softening. The contents of water soluble substances were slightly increased during ripening, but the contents of alcohol-insoluble substances were not changed. The contents of pectin were not changed at green mature and turning stage, while decreased after mature stage. The contents of alkali-soluble hemicellulose and cellulose were increased during ripening and softening. The contents of water-soluble and saltsoluble protein were not changed, but the content of cell wall protein was slightly decreased during ripening. The content of total protein was increased at turning stage, it is not changed after turning stage. $\beta$-Galactosidase activity was increased during ripening, and pectinmethylesterase activity was decreased at turning. Phenylalanine ammonia-lyase activity was changed up to mature stage, but decreased at overripening stage. Polygalacturonase and cellulase activities were not detected at all of ripening stages.

  • PDF

내산성, 내답즙성이 높은 미생물을 이용한 생균제 개발

  • Kim, So-Yeong;Jeong, Hae-Yeong;Jo, Cheol-Hui;Park, Geun-Hyeong;Son, Seok-Min;Lee, Gi-Yeong;Lee, Geon-Sun;Kim, Hong;Chae, Hui-Jeong
    • 한국생물공학회:학술대회논문집
    • /
    • 2003.04a
    • /
    • pp.180-184
    • /
    • 2003
  • Several bacteria and yeasts were isolated from soil and characterized for the development of functional probiotics which can be used as a livestock feed additive. From the soil, the microbial strains which have acid/bovine resistance, antibiotics resistance and high stability, were isolated. Most strains selected were very tolerable against acids and very stable in a broad range of pH. Some strains could survive 100% at pH 2.5. The growth of the strains was not affected in the presence of bile acid, pathogenic E. coli and several antibiotics such as tetracycline, nisin, kanamycin, streptomycin, ampicillin. Acidogenic capability test showed that all the strains can produce acids. The hydrolytic activities were analysed for amylase, protease, lipase and cellulase to decompose various organic compounds. All the strains were found to be gram negative, round type, non-kinetic and the color is yellow or white.

  • PDF

Enzymes Hydrolyzing Structural Components and Ferrous Ion Cause Rusty-root Symptom on Ginseng (Panax ginseng)

  • Lee, Chan-Yong;Kim, Kwang-Yup;Lee, Jo-Eun;Kim, Sung-Han;Ryu, Dong-Kul;Choi, Jae-Eul;An, Gil-Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.2
    • /
    • pp.192-196
    • /
    • 2011
  • Microbial induction of rusty-root was proved in this study. The enzymes hydrolyzing plant structural materials, including pectinase, pectolyase, ligninase, and cellulase, caused the rusty-root in ginseng. Pectinase and pectolyase produced the highest rusty-color formation. Ferrous ion ($Fe^{+++}$) caused the synergistic effect on rusty-root formation in ginseng when it was used with pectinase. The effect of ferric ion ($Fe^{++}$) on rusty-root formation was slow, compared with $Fe^{+++}$, probably due to gradual oxidation to $Fe^{+++}$. Other metal ions including the ferric ion ($Fe^{++}$) did not affect rusty-root formation. The endophytic bacteria Agrobacterium tumefaciens, Lysobacter gummosus, Pseudomonas veronii, Pseudomonas marginalis, Rhodococcus erythropolis, and Rhodococcus globerulus, and the rotten-root forming phytophathogenic fungus Cylindrocarpon destructans, caused rusty-root. The polyphenol formation (rusty color) was not significantly different between microorganisms. The rotten-root-forming C. destructans produced large quantities of external cellulase activity (${\approx}2.3$ U[${\mu}m$/min/mg protein]), which indicated the pathogenecity of the fungus, whereas the bacteria produced 0.1-0.7 U. The fungal external pectinase activities (0.05 U) and rusty-root formation activity were similar to those of the bacteria. In this report, we proved that microbial hydrolyzing enzymes caused rusty-root (Hue value $15^{\circ}$) of ginseng, and ferrous ion worsened the symptom.

Isolation and physiological characteristics of cellulolytic bacteria (섬유소 분해세균의 분리 및 생리적인 특성)

  • Kwon, Oh-Jin;Chung, Yung-Gun
    • Applied Biological Chemistry
    • /
    • v.37 no.4
    • /
    • pp.226-233
    • /
    • 1994
  • Three hundred and one cellulolytic bacterial were isolated from the 148 screening sources such as decomposed wood, soil, compost and leaf mold. Among them, strain KL-6 was found to have the highest of cellulase activity, and identified as species belonged to the genus Cellulomonas. Strain KL-6 was decompose up to 90% of the filter paper (whatman No. 1) substrate within 50 hours, and showed the colony halo formation (11 cm). The activities of CMCase (67 unit/ml), FPase (70 unit/ml) and ${\beta}-glucosidase$ (0.68 unit/ml) were obtained when this strain was cultured for 50 hrs at $30^{\circ}C$. Glucose was not found in detectable amounts at the FP medium. The optimum composition of nutrient medium for the cell growth by strain KL-6 was sucrose 0.5%, yeast extract 0.1%, $(NH_4)_2HPO_4\;0.1%$, $K_2HPO_4\;0.1%$, $MgSO_4{\cdot}7H_2O\;0.01%$, $CaCl_2\; 0.01%$, NaCl 0.6%, $CaCO_3\;0.1%$ and the optimum pH and temperature were 7.0 and $30^{\circ}C$, respectively.

  • PDF

Identification and Characterization of an Anaerobic Ethanol-Producing Cellulolytic Bacterial Consortium from Great Basin Hot Springs with Agricultural Residues and Energy Crops

  • Zhao, Chao;Deng, Yunjin;Wang, Xingna;Li, Qiuzhe;Huang, Yifan;Liu, Bin
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.9
    • /
    • pp.1280-1290
    • /
    • 2014
  • In order to obtain the cellulolytic bacterial consortia, sediments from Great Basin hot springs (Nevada, USA) were sampled and enriched with cellulosic biomass as the sole carbon source. The bacterial composition of the resulting anaerobic ethanol-producing celluloytic bacterial consortium, named SV79, was analyzed. With methods of the full-length 16S rRNA library-based analysis and denaturing gradient gel electrophoresis, 21 bacteria belonging to eight genera were detected from this consortium. Clones with closest relation to the genera Acetivibrio, Clostridium, Cellulosilyticum, Ruminococcus, and Sporomusa were predominant. The cellulase activities and ethanol productions of consortium SV79 using different agricultural residues (sugarcane bagasse and spent mushroom substrate) and energy crops (Spartina anglica, Miscanthus floridulus, and Pennisetum sinese Roxb) were studied. During cultivation, consortium SV79 produced the maximum filter paper activity (FPase, 9.41 U/ml), carboxymethylcellulase activity (CMCase, 6.35 U/ml), and xylanase activity (4.28 U/ml) with sugarcane bagasse, spent mushroom substrate, and S. anglica, respectively. The ethanol production using M. floridulus as substrate was up to 2.63 mM ethanol/g using gas chromatography analysis. It has high potential to be a new candidate for producing ethanol with cellulosic biomass under anoxic conditions in natural environments.

Effect of Multiple Copies of Cohesins on Cellulase and Hemicellulase Activities of Clostridium cellulovorans Mini-cellulosomes

  • Cha, Jae-Ho;Matsuoka, Satoshi;Chan, Helen;Yukawa, Hideaki;Inui, Masayuki;Doi, Roy H.
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.11
    • /
    • pp.1782-1788
    • /
    • 2007
  • Cellulosomes in Clostridium cellulovorans are assembled by the interaction between the repeated cohesin domains of a scaffolding protein (CbpA) and the dockerin domain of enzyme components. In this study, we determined the synergistic effects on cellulosic and hemicellulosic substrates by three different recombinant mini-cellulosomes containing either endoglucanase EngB or endoxylanase XynA bound to mini-CbpA with one cohesin domain (mini-CbpAl), two cohesins (mini-CbpA12), or four cohesins (mini-CbpAl234). The assembly of EngB or XynA with mini-CbpA increased the activity against carboxymethyl cellulose, acid-swollen cellulose, Avicel, xylan, and com fiber 1.1-1.8-fold compared with that for the corresponding enzyme alone. A most distinct improvement was shown with com fiber, a natural substrate containing xylan, arabinan, and cellulose. However, there was little difference in activity between the three different mini-cellulosomes when the cellulosomal enzyme concentration was held constant regardless of the copy number of cohesins in the cellulosome. A synergistic effect was observed when the enzyme concentration was increased to be proportional to the number of cohesins in the mini-cellulosome. The highest degree of synergy was observed with mini-CbpAl234 (1.8-fold) and then mini-CbpAl2 (1.3-fold), and the lowest synergy was observed with mini-CbpAl (1.2-fold) when Avicel was used as the substrate. As the copy number of cohesin was increased, there was more synergy. These results indicate that the clustering effect (physical enzyme proximity) of the enzyme within the mini-cellulosome is one of the important factors for efficient degradation of plant cell walls.

Effects of Fermentation Parameters on Cellulolytic Enzyme Production under Solid Substrate Fermentation (농부산물을 이용한 고체발효에서 발효조건이 목질계 분해 효소 생산에 미치는 영향)

  • Kim, Jin-Woo
    • Korean Chemical Engineering Research
    • /
    • v.52 no.3
    • /
    • pp.302-306
    • /
    • 2014
  • The present study was carried out to optimize fermentation parameters for the production of cellulolytic enzymes through solid substrate fermentation of Trichoderma reesei and Aspergillus niger grown on wheat straw. A sequential optimization based on one-factor-at-a-time method was applied to optimize fermentation parameters including temperature, pH, moisture content and particle size. The results of optimization indicated that $40^{\circ}C$, pH 7, moisture content 75% and particle size between 0.25~0.5 mm were found to be the optimum condition at 96 hr fermentation. Under the optimal condition, co-culture of T. reesei and A. niger produced cellulase activities of 10.3 IU, endoglucanase activity of 100.3 IU, ${\beta}$-glucosidase activity of 22.9 IU and xylanase activity of 2261.7 IU/g dry material were obtained. Cellulolytic enzyme production with optimization showed about 72.6, 48.8, 55.2 and 51.9% increase compared to those obtained from control experiment, respectively.

Isolation and Characterization of Marine Microorganisms Producing Cellulase from the Seashore of the Kyungsang Province in Korea

  • Jo, Kang-Ick;Lee, Bo-Hwa;Kim, Bo-Kyung;Jo, Hae-Young;Kim, Sung-Koo;Nam, Soo-Wan;Lee, Jin-Woo
    • 한국생물공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.307-311
    • /
    • 2005
  • Marine microorganisms to produce functional biopolymers were isolated from the seashore of the Kyungsang province. Microorganisms to hydrolyze carboxy-methyl cellulose(CMC) were cultured in marin broth and the other liquid medium that contained 2.0% (w/v) glucose, 0.25% yeast extract, 0.5% $K_2HPO_4$, 1% NaCl, 0.02% $MgSO_4{\cdot}7H_2O$ and 0.06% $(NH_4)_2SO_4$ to investigate the ability to produce carboxymethyl cellululase (CMCase) under aerobic conditions. Twelve microorganisms among them showed higher activities of CMCase than B. amyloliquefaciens DL-3, which was known as a cellulase-producing strain. The microorganism showing highest activity of CMCase in this study was identified as Bacillus subtilis subsp. subtilis with 16S rDNA partial sequencing and gyrase A partial sequencing and named as B. subtilis subsp. subtilis A-53.

  • PDF

The Effects of Physico-Chemical Factors on the Microbial Population in Groundwater (지하수 세균 군집에 미치는 물리화학적 환경요인의 영향)

  • 안영범;김여원;이대영;민병례;최영길
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.5 no.4
    • /
    • pp.215-222
    • /
    • 1998
  • The objective of this study was to investigate the effects of physico-chemical environmental factors on the changes of bacterial population from two sites used for drinking water and eight sites polluted with various pollutant in Seoul city. In all the stations except for two sites used for drinking water, the concentrations of nitrate- nitrogen and ammonia were in excess of the criteria of groundwater quality by the result of analysis of 40 variations including physicochemical environmental factors, heavy metals, and bacterial populations. The numbers of total bacteria, heterotrophic bacteria and functional groups of bacteria were ranged from 5.1 to 41.4${\times}$10$\^$5/cells/ml and from 0.01 to 29.6${\times}$10$^4$cfu/ml, respectively. The activities of extracellular enzymes showed the ranges of 0.005∼11.3${\mu}$M/l/hr and its order to lipase, phophatase, ${\beta}$-glucosidase, cellulase, chitinase, amylase. The results of correspondence and multidimensional scaling analysis between bacterial populations and its physico-chemical environmental factors were explained the effects of physico-chemical environmental factors according to site characters and separated four group, which is accord with potential pollutants at wells.

  • PDF

Isolation and Characterization of Microorganisms for the Development of Fermentation Accelerator of Animal Manure (가축분뇨 발효제의 개발을 위한 미생물 분리 및 특성조사)

  • Kim, So-Young;Kim, Hong;Choi, Hee-Jung
    • KSBB Journal
    • /
    • v.18 no.6
    • /
    • pp.466-472
    • /
    • 2003
  • Several microorganisms were isolated and characterized for the development of fermentation accelerator of animal manure. Firstly, 61 species were isolated from rice bran extract. Secondly, five strains of microorganisms were screened by the analysis of hydrolysis activities for organic compounds including protease, cellulase, amylase, and lipase. From a deodorization test for ammonia gas using the isolated strains, finally three bacterial strains were selected (NA 2, 12, 15). The selected strains, NA 2 and 15 were identified as Bacillus acidocaldarius and Planococcus sp. respectively. The media composition of key nutrients and pH for the mixed culture of the three selected strains were optimized using an experimental design method (response surface method) as follows : beef extract (4.59g/L), peptone (8.72g/L) and pH 6.3. Consequently, the isolated microorganisms seem to have potential applicability in the animal manure treatment.