• Title/Summary/Keyword: cellular-automata

Search Result 332, Processing Time 0.024 seconds

GIS-based Fire Evacuation Simulation using CA Model (CA 모델을 이용한 GIS 기반 화재 대피 시뮬레이션)

  • Park, In-Hye;Jun, Chul-Min;Lee, Ji-Yeong
    • Spatial Information Research
    • /
    • v.16 no.2
    • /
    • pp.157-171
    • /
    • 2008
  • With emerging technologies on wireless networks and mobile computing environment, a number of researches have been carried out for ubiquitous computing. An important functional requirement of ubiquitous computing is to handle location data with ease. With the increase of accidents in large complex buildings. move attention is being paid to indoor spaces and evacuation. However, most currently used evacuation-related applications are simulation based on hypothetical data. Also, since they use non-georeferenced CAD data, it is not easy to integrate them with indoor positioning devices. With the recent progress of indoor positioning systems, the simulators can be enhanced to real-time evacuation systems. As a preliminary stage to make such systems possible, this study proposes using a georeferenced data and evacuation simulation. This study used GIS data and Cellular Automata theory an the algorithm for the movement of the evacuee.

  • PDF

Multilayer QCA D-latch design using cell interaction (셀 간 상호작용을 이용한 다층구조 QCA D-래치 설계)

  • Jang, Woo-Yeong;Jeon, Jun-Cheol
    • The Journal of the Convergence on Culture Technology
    • /
    • v.6 no.2
    • /
    • pp.515-520
    • /
    • 2020
  • CMOS used in digital circuit design technology has reached the limit of integration due to quantum tunneling. Quantum-dot cellular automata (QCA), which can replace this, has many advantages such as low power consumption and fast switching speed, so many digital circuits of CMOS have been proposed based on QCA. Among them, the multiplexer is a basic circuit used in various circuits such as D-flip-flops and resistors, and has been studied a lot. However, the existing multiplexer has a disadvantage that space efficiency is not good. Therefore, in this paper, we propose a new multilayered multiplexer using cell interaction and D-latch using it. The multiplexer and D-latch proposed in this paper have improved area, cell count, and delay time, and have excellent connectivity and scalability when designing large circuits. All proposed structures are simulated using QCADesigner to verify operation.

Design of QCA Content-Addressable Memory Cell for Quantum Computer Environment (양자컴퓨터 환경에서의 QCA 기반 내용주소화 메모리 셀 설계)

  • Park, Chae-Seong;Jeon, Jun-Cheol
    • The Journal of the Convergence on Culture Technology
    • /
    • v.6 no.2
    • /
    • pp.521-527
    • /
    • 2020
  • Quantum-dot cellular automata (QCA) is a technology that attracts attention as a next-generation digital circuit design technology, and several digital circuits have been proposed in the QCA environment. Content-addressable memory (CAM) is a storage device that conducts a search based on information stored therein and provides fast speed in a special process such as network switching. Existing CAM cell circuits proposed in the QCA environment have a disadvantage in that a required area and energy dissipation are large. The CAM cell is composed of a memory unit that stores information and a match unit that determines whether or not the search is successful, and this study proposes an improved QCA CAM cell by designing the memory unit in a multi-layer structure. The proposed circuit uses simulation to verify the operation and compares and analyzes with the existing circuit.

A Study on Installation Experiment of Pedestrian Facility Using Agent-based Pedestrian Simulation Model (행위자기반(agent-based) 보행 시뮬레이션 모델을 이용한 보행시설 설치 실험에 관한 연구)

  • Lee, Shin-Hae;Lee, Seung-Jae
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.8 no.3
    • /
    • pp.131-138
    • /
    • 2009
  • The purpose of this paper is the development of an agent-based pedestrian simulation model. The simulation model is based on the Cellular Automata theory. The model consists of four components: initialization, pedestrian generation, lateral movement, and front movement components. We have applied this model for experiment about pedestrian facility. In particular, we have experimented how the installation of fence is effective to resolve conflict pedestrian movements in different directions. We have found that the installation of the fence as a pedestrian facility can divide conflict moving pedestrians effectively. We have also found that the effect of the fence is bigger in slightly congested pedestrian flows than in severely congested pedestrian flows.

  • PDF

True Random Number Generator based on Cellular Automata with Random Transition Rules (무작위 천이규칙을 갖는 셀룰러 오토마타 기반 참난수 발생기)

  • Choi, Jun-Beak;Shin, Kyung-Wook
    • Journal of IKEEE
    • /
    • v.24 no.1
    • /
    • pp.52-58
    • /
    • 2020
  • This paper describes a hardware implementation of a true random number generator (TRNG) for information security applications. A new approach for TRNG design was proposed by adopting random transition rules in cellular automata and applying different transition rules at every time step. The TRNG circuit was implemented on Spartan-6 FPGA device, and its hardware operation generating random data with 100 MHz clock frequency was verified. For the random data of 2×107 bits extracted from the TRNG circuit implemented in FPGA device, the randomness characteristics of the generated random data was evaluated by the NIST SP 800-22 test suite, and all of the fifteen test items were found to meet the criteria. The TRNG in this paper was implemented with 139 slices of Spartan-6 FPGA device, and it offers 600 Mbps of the true random number generation with 100 MHz clock frequency.

Characterization of Uniform/Hybrid Complemented Group Cellular Automata with Rules 195/153/51 (전이규칙 195,153,51을 갖는 Uniform/Hybrid 여원 그룹 셀룰라 오토마타의 특성화)

  • Hwang, Yoon-Hee;Cho, Sung-Jin;Choi, Un-Sook;Kim, Seok-Tae
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.1
    • /
    • pp.315-318
    • /
    • 2005
  • Recently, the advent of wireless communication and other handhold devices like Personal Digital Assistants and smart cards have made in implementation of cryptosystems a major issue. One important aspect of modern day ciphers is the scope for hardware sharing between the encryption and decryption algorithm. The cellular Automata which have been proposed as an alternative to linear feedback shift registers(LFSRs) can be programmed to perform the operations without using any dedicated hardware. But to generalize and analyze CA is not easy. In this paper, we characterizes uniform/hybird complemented group CA with rules 195/153/51 that divide the entire state space into smaller spaces of maximal equal lengths. This properties can be useful in constructing key agreement algorithm.

  • PDF

A Novel Digital Image Protection using Cellular Automata Transform (셀룰라 오토마타 변환을 이용한 정지영상 보호 방법)

  • Shin, Jin-Wook;Yoon, Sook;Yoo, Hyuck-Min;Park, Dong-Sun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.8C
    • /
    • pp.689-696
    • /
    • 2010
  • The goal of this paper is to present a novel method for protecting digital image using 2-D cellular automata transform (CAT). A copyright and transform coefficients are used to generate a new content-based copyright and an original digital image is distributed without any hidden copyright. The parameter, which is called gateway value, for 2-D CAT is consisted of rule number, initial configuration, lattice length, number of neighbors, and etc. Since 2-D CAT has various gateway values, it is more secure than conventional methods. The proposed algorithm is verified using attacked images such as filtering, cropping, JPEG compression, and rotation for robustness.

Design of Key Sequence Generators Based on Symmetric 1-D 5-Neighborhood CA (대칭 1차원 5-이웃 CA 기반의 키 수열 생성기 설계)

  • Choi, Un-Sook;Kim, Han-Doo;Kang, Sung-Won;Cho, Sung-Jin
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.3
    • /
    • pp.533-540
    • /
    • 2021
  • To evaluate the performance of a system, one-dimensional 3-neighborhood cellular automata(CA) based pseudo-random generators are widely used in many fields. Although two-dimensional CA and one-dimensional 5-neighborhood CA have been applied for more effective key sequence generation, designing symmetric one-dimensional 5-neighborhood CA corresponding to a given primitive polynomial is a very challenging problem. To solve this problem, studies on one-dimensional 5-neighborhood CA synthesis, such as synthesis method using recurrence relation of characteristic polynomials and synthesis method using Krylov matrix, were conducted. However, there was still a problem with solving nonlinear equations. To solve this problem, a symmetric one-dimensional 5-neighborhood CA synthesis method using a transition matrix of 90/150 CA and a block matrix has recently been proposed. In this paper, we detail the theoretical process of the proposed algorithm and use it to obtain symmetric one-dimensional 5-neighborhood CA corresponding to high-order primitive polynomials.

Design of QCA Latch Using Three Dimensional Loop Structure (3차원 루프 구조를 이용한 QCA 래치 설계)

  • You, Young-Won;Jeon, Jun-Cheol
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.7 no.2
    • /
    • pp.227-236
    • /
    • 2017
  • Quantum-dot cellular automata(QCA) consists of nano-scale cells and demands very low power consumption so that it is one of the alternative technologies that can overcome the limits of scaling CMOS technologies. Various circuits on QCA have been researched until these days, a latch required for counter and state control has been proposed as a component of sequential logic circuits. A latch uses a feedback loop to maintain previous state. In QCA, a latch uses a square structure using 4 clocks for feedback loop. Previous latches have been proposed using many cells and clocks in coplanar. In this paper, in order to eliminate these defects, we propose a SR and D latch using multilayer structure on QCA. Proposed three dimensional loop structure is based on multilayer and consists of 3 layers. Each layer has 2 clock differences between layers in order to reduce interference. The proposed latches are analyzed and compared to previous designs.

Design of XOR Gate Based on QCA Universal Gate Using Rotated Cell (회전된 셀을 이용한 QCA 유니버셜 게이트 기반의 XOR 게이트 설계)

  • Lee, Jin-Seong;Jeon, Jun-Cheol
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.7 no.3
    • /
    • pp.301-310
    • /
    • 2017
  • Quantum-dot cellular automata(QCA) is an alternative technology for implementing various computation, high performance, and low power consumption digital circuits at nano scale. In this paper, we propose a new universal gate in QCA. By using the universal gate, we propose a novel XOR gate which is reduced time/hardware complexity. The universal gate can be used to construct all other basic logic gates. Meanwhile, the proposed universal gate is designed by basic cells and a rotated cell. The rotated cell of the proposed universal gate is located at the central of 3-input majority gate structure. In this paper, we propose an XOR gate using three universal gates, although more than five 3-input majority gates are used to design an XOR gate using the 3-input majority gate. The proposed XOR gate is superior to the conventional XOR gate in terms of the total area and the consumed clock because the number of gates are reduced.