• Title/Summary/Keyword: cellular growth

검색결과 1,490건 처리시간 0.03초

Structural Changes of Adhesive Discs during Attachment of Boston Ivy

  • Kim, InSun
    • Applied Microscopy
    • /
    • 제44권4호
    • /
    • pp.111-116
    • /
    • 2014
  • This study investigates the developmental pattern of adhesive discs (ADs) to highlight the ontogeny and structural changes that occur during the growth of Boston ivy. Initiation to postmortem features of ADs were examined through light and scanning electron microscopy. The study also reveals a new finding of the dislocation of peripheral tissues of adaxial origin. Four phases of attachment are suggested with regards to its climbing behavior: 1) pre-attachment, 2) upon attachment, 3) after attachment, and 4) final attachment. During initiation, several ADs originate from tendril primordia without epidermal differentiation. However, different growth rates in the epidermis results in completely different ADs. ADs were discerned by size, shape, and color during expansion, but cells in the adaxial surface remained alive longer than the other side. Upon contact, the ADs demonstrate simultaneous growth and deterioration, but once attachment is established the latter process subdues to final stages. Epidermal transformation, adhesive secretion, cellular disruption, and mechanical stress were essential for the self-clinging nature of Boston ivy. The post-attachment sequence is also believed to be critical in achieving maximum mechanical strength to provide extensive support. The developmental process of ADs is prompted by tactile stimulation but in a highly organized and systematic manner.

A Methylobacillus Isolate Growing Only on Methanol (메탄올만 이용하여 성장하는 Methylobacillus의 분리 및 특성)

  • 김시욱;김병홍;김영민
    • Korean Journal of Microbiology
    • /
    • 제29권4호
    • /
    • pp.250-257
    • /
    • 1991
  • An obligate methanol-oxidizing bacterium, Methylobacillus sp. strain SK1, which grows only on methanol was isolated from soil. The isolate was nonmotile Gram-negtive rod. It does not have internal membrane system. The colonies were small, whitish-yellow, and smooth. The guanine plus cytosine content of the DNA was 48 mol%. Cellular fatty acids consisted predominantly of large amounts of straight-chain saturated $C_{16:0}$ acid and unsaturated $C_{16:1}$ acid. The major ubiquinone was Q-8, and Q-10 was present as minor component. The cell was obligately aerobic and exhibited catalase, but no oxidase, activity. Poly-.betha.-hydroxybutyrate, endospores, or cysts were not observed. the isolate could grow only on methanol in mineral medium. Growth factors were not required. The isolate was unable to use methane, formaldehyde, formate, methylamine, and several other organic compounds tested as a sole source of carbon and energy. Growth was optimal at 35.deg.C and pH 7.5. It could not grow at 42.deg.C. The doubling time was 1.2h at 30.deg.C when grown with 1.0%(v/v) methanol. The growth was not affected by antibiotics inhibiting cell wall synthesis and carbon monoxide but was completely suppressed by those inhibiting protein synthesis. Methanol was found to be assimilated through the ribulose monophosphate pathway. Cytochromes of b-, c-, and o- types were found. Cell-free extracts contained a phenazine methosulfate-linked methanol dehydrogenase activity, which required ammonium ions as an activator. Cells harvested after the late exponential phase seemed to contain blue protein.ein.

  • PDF

Insulin-Like Growth Factor-I-Induced Androgen Receptor Activation Is Mediated by the PI3K/Akt Pathway in C2C12 Skeletal Muscle Cells

  • Lee, Won Jun
    • Molecules and Cells
    • /
    • 제28권5호
    • /
    • pp.495-499
    • /
    • 2009
  • Although insulin-like growth factor-I (IGF-I) and androgen receptor (AR) are well known effectors of skeletal muscle, the molecular mechanism by which signaling pathways integrating AR and IGF-I in skeletal muscle cells has not been previously examined. In this study, the role of PI3K/Akt on IGF-I-induced gene expression and activation of AR in skeletal muscle cells was investigated. C2C12 cells were treated with IGF-I in the absence or presence of inhibitors of PI3K/Akt pathway (LY294002 and Wortmannin). Inhibition of the PI3K/Akt pathway with LY294002 or Wortmannin led to a significant decrease in IGF-I-induced AR phosphorylation and total AR protein expression. Furthermore, IGF-I-induced AR mRNA and skeletal ${\alpha}-actin$ mRNA were blocked by LY294002 or Wortmannin. Confocal images showed that IGF-I-induced AR translocation from cytosol to nucleus was inhibited significantly in response to treatment with LY294002 or Wortmannin. The present results suggest that modulating effect of IGF-I on AR gene expression and activation in C2C12 mouse skeletal muscle cells is mediated at least in part by the PI3K/Akt pathway.

Decorin: a multifunctional proteoglycan involved in oocyte maturation and trophoblast migration

  • Park, Beom Seok;Lee, Jaewang;Jun, Jin Hyun
    • Clinical and Experimental Reproductive Medicine
    • /
    • 제48권4호
    • /
    • pp.303-310
    • /
    • 2021
  • Decorin (DCN) is a proteoglycan belonging to the small leucine-rich proteoglycan family. It is composed of a protein core containing leucine repeats with a glycosaminoglycan chain consisting of either chondroitin sulfate or dermatan sulfate. DCN is a structural component of connective tissues that can bind to type I collagen. It plays a role in the assembly of the extracellular matrix (ECM), and it is related to fibrillogenesis. It can interact with fibronectin, thrombospondin, complement component C1, transforming growth factor (TGF), and epidermal growth factor receptor. Normal DCN expression regulates a wide range of cellular processes, including proliferation, migration, apoptosis, and autophagy, through interactions with various molecules. However, its aberrant expression is associated with oocyte maturation, oocyte quality, and poor extravillous trophoblast invasion of the uterus, which underlies the occurrence of preeclampsia and intrauterine growth restriction. Spatiotemporal hormonal control of successful pregnancy should regulate the concentration and activity of specific proteins such as proteoglycan participating in the ECM remodeling of trophoblastic and uterine cells in fetal membranes and uterus. At the human feto-maternal interface, TGF-β and DCN play crucial roles in the regulation of trophoblast invasion of the uterus. This review summarizes the role of the proteoglycan DCN as an important and multifunctional molecule in the physiological regulation of oocyte maturation and trophoblast migration. This review also shows that recombinant DCN proteins might be useful for substantiating diverse functions in both animal and in vitro models of oogenesis and implantation.

Comparative analysis of yeast cell viability at exponential and stationary growth phases

  • An, Yejin;Jo, Nayoon;Kim, Hyeji;Nam, Dahye;Son, Woorim;Park, Jinkyu
    • Analytical Science and Technology
    • /
    • 제35권4호
    • /
    • pp.181-188
    • /
    • 2022
  • This paper describes a comparative analysis of yeast cell viability at exponential and stationary growth phases using multiple conventional techniques and statistical tools. Overall, cellular responses to various viability assays were asynchronous. Results of optical density measurement and direct cell counting were asynchronous both at exponential and stationary phases. Proliferative capacity measurement using SP-SDS indicated that cells at the end of the stationary phase were proliferative as much as exponentially growing cells. Metabolic activity assays using two different dyes concluded that the inside of cells at stationary phase is slightly less reducing compared to that of exponentially growing cells, implying that the metabolic activity imperceptibly declined as cells were aged. These results will be helpful to understand the details of yeast cell viability at exponential and stationary growth phases.

Inhibitory Effects of Resina Pini on the Growth and Glucosyltransferase activity of Streptococcus mutans

  • Seo, Young-A;Choi, Nam-Ju;Suk, Kui-Duk
    • Natural Product Sciences
    • /
    • 제11권1호
    • /
    • pp.27-32
    • /
    • 2005
  • The purpose of this study is to evaluate the inhibitory effects of Resina Pini against Streptococcus mutans (S. mutans) that is one of the major causes of dental caries and oral diseases. Topically applied Resina Pini (RP) would be incorporated in saliva and thus the factor associated with water solubility should be considered. In this paper, therefore, effects of various treatment for RP and activities of water extracts from unprocessed and processed RP were compared. The crude RP (RP1) and the recrystallized RP (RP2) in ethanol solution showed strong antimicrobial activities (d.>15mm) against S. mutans. All RP samples exhibited considerable inhibitory effect against glucosyltransferase produced by S. mutans $(IC_{50}=91.2\;to\;276.2\;{\mu}g/ml)$. The very considerable increase in cellular permeability of S. mutans was observed with RP1, RP2 and their water extracts. These results suggest that RP1 and RP2 may be a potential source for pharmaceutical products used for prevention and/or treatment of dental caries and periodontal disease.

Genetic Regulation of Cellular Responses and Signal Targeting Pathways Invoked by an Environmental Stress (환경 스트레스에 의한 세포 내 신호의 이동 경로와 유전적 조절)

  • Kim, Il-Sup;Kim, Hyun-Young;Kang, Hong-Gyu;Yoon, Ho-Sung
    • Korean Journal of Environmental Biology
    • /
    • 제26권4호
    • /
    • pp.377-384
    • /
    • 2008
  • A cell is the product of a long period of evolution and can be represented as an optimized system (homeostasis). Stimuli from the outside environment are received by sensory apparatus on the surface of the cell and transferred through complicated pathways and eventually regulate gene expression. These signals affect cell physiology, growth, and development, and the interaction among genes in the signal transduction pathway is a critical part of the regulation. In this study, the interactions of deletion mutants and overexpression of the extracopies of the genes were used to understand their relationships to each other. Also, green fluorescent protein (GFP reporter gene) was fused to the regulatory genes to elucidate their interactions. Cooverexpression of the two genes in extracopy plasmids suggested that patS acts at the downstream of hetR in the regulatory network. The experiments using gfp fusion in different genetic background cells also indicated the epistasis relationships between the two genes. A model describing the regulatory network that controls cell development is presented.

Reevaluation of the Metabolic Essentiality of the Vitamins - Review -

  • McDowell, L.R.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제13권1호
    • /
    • pp.115-125
    • /
    • 2000
  • In recent years a great deal of information has accumulated for livestock on vitamin. function, metabolism and supplemental needs. The role of the antioxidant "vitamins" (carotenoids, vitamin E and vitamin C) in immunity and health of livestock has been a fruitful area of research. These nutrients play important roles in animal health by inactivating harmful free radicals produced through normal cellular activity and from various stressors. Both in vitro and in vivo studies showed that these antioxidant vitamins generally enhance different aspects of cellular and noncellular immunity. A compromised immune system will result in reduced animal production efficiency through increased susceptibility to diseases, thereby leading to increased animal morbidity and mortality. Vitamin E has been shown to increase performance of feedlot cattle and to increase immune response for ruminant health, including being beneficial for mastitis control. Vitamin E given to finishing cattle at higher than National Research Council (NRC) requirements dramatically maintained the red color (oxymyoglobin) compared with the oxidized metmyoglobin of beef. Under commercial livestock and poultry production conditions, vitamin allowances higher than NRC requirements may be needed to allow optimum performance. Generally, the optimum vitamin supplementation level is the quantity that achieves the best growth rate, feed utilization, health (including immune competency), and provides adequate body reserves.

Shedding; towards a new paradigm of syndecan function in cancer

  • Choi, So-Joong;Lee, Ha-Won;Choi, Jung-Ran;Oh, Eok-Soo
    • BMB Reports
    • /
    • 제43권5호
    • /
    • pp.305-310
    • /
    • 2010
  • Syndecans, cell surface heparansulfate proteoglycans, have been proposed to act as cell surface receptors and/or coreceptors to play critical roles in multiple cellular functions. However, recent reports suggest that the function of syndecans can be further extended through shedding, a cleavage of extracellular domain. Shedding constitutes an additional level for controlling the function of syndecans, providing a means to attenuate and/or regulate amplitude and duration of syndecan signals by modulating the activity of syndecans as cell surface receptors. Whether these remaining cleavage products are still capable of functioning as cell surface receptors to efficiently transduce signals inside of cells is not clear. However, shedding transforms cell surface receptor syndecans into soluble forms, which, like growth factors, may act as novel ligands to induce cellular responses by association with other cell surface receptors. It is becoming interestingly evident that shed syndecans also contribute significantly to syndecan functions in cancer biology. This review presents current knowledge about syndecan shedding and its functional significance, particularly in the context of cancer.

Studies on Cellular Factors Responsible for 2,3,7,8-TCDD Resistency and Cellular Transformation (2,3,7,8-TCDD의 세포형질전환 및 내성획득에 관여하는 세포내 인자에 관한 연구)

  • Ryeom Tai-Kyung;Choi Young-Sill;Kim Ok-Hee;Kang Ho-Il
    • Environmental Mutagens and Carcinogens
    • /
    • 제26권1호
    • /
    • pp.1-6
    • /
    • 2006
  • To enhance our understanding of toxicity mediated through the pathway by which TCDD stimulates gene expression, we have investigated genes whose expressions are changed after treatment with TCDD and/or MNNG in human Chang liver cell. First, we treated with MNNG and TCDD for two weeks to transform human Chang liver cell. We obtained cell looks like to be transformed and compared the differential gene expression by using cDNA chip (Macrogen) which carrys genes related with signal transduction pathways, oncogenes and tumor suppressor genes, etc. We found that TCDD up- or down-regulated 203 and 111 genes including oncogenes and tumor suppressor genes in human Chang liver cell two fold or more, respectively. Second, we compared the differential gene expression after treatment with TCDD only by using cDNA chip (Superarray) which carrys genes related with cell cycle regulations, and found that TCDD up regulated genes related with cell proliferation as well as cell growth inhibition in human Chang liver cell two fold or more, respectively. These results suggest that toxicity induced by TCDD may reflect sustained alterations in the expression of many genes and that the changes reflect both direct and indirect effects of TCDD.

  • PDF