• Title/Summary/Keyword: cellular growth

검색결과 1,490건 처리시간 0.025초

Effects of nerve cells and adhesion molecules on nerve conduit for peripheral nerve regeneration

  • Chung, Joo-Ryun;Choi, Jong-Won;Fiorellini, Joseph P.;Hwang, Kyung-Gyun;Park, Chang-Joo
    • Journal of Dental Anesthesia and Pain Medicine
    • /
    • 제17권3호
    • /
    • pp.191-198
    • /
    • 2017
  • Background: For peripheral nerve regeneration, recent attentions have been paid to the nerve conduits made by tissue-engineering technique. Three major elements of tissue-engineering are cells, molecules, and scaffolds. Method: In this study, the attachments of nerve cells, including Schwann cells, on the nerve conduit and the effects of both growth factor and adhesion molecule on these attachments were investigated. Results: The attachment of rapidly-proliferating cells, C6 cells and HS683 cells, on nerve conduit was better than that of slowly-proliferating cells, PC12 cells and Schwann cells, however, the treatment of nerve growth factor improved the attachment of slowly-proliferating cells. In addition, the attachment of Schwann cells on nerve conduit coated with fibronectin was as good as that of Schwann cells treated with glial cell line-derived neurotrophic factor (GDNF). Conclusion: Growth factor changes nerve cell morphology and affects cell cycle time. And nerve growth factor or fibronectin treatment is indispensable for Schwann cell to be used for implantation in artificial nerve conduits.

BolA Affects Cell Growth, and Binds to the Promoters of Penicillin-Binding Proteins 5 and 6 and Regulates Their Expression

  • Guinote, Ines Batista;Matos, Rute Goncalves;Freire, Patrick;Arraiano, Cecilia Maria
    • Journal of Microbiology and Biotechnology
    • /
    • 제21권3호
    • /
    • pp.243-251
    • /
    • 2011
  • The gene bolA was discovered in the 80's, but unraveling its function in the cell has proven to be a complex task. The BolA protein has pleiotropic effects over cell physiology, altering growth and morphology, inducing biofilm formation, and regulating the balance of several membrane proteins. Recently, BolA was shown to be a transcription factor by repressing the expression of the mreB gene. The present report shows that BolA is a transcriptional regulator of the dacA and dacC genes, thus regulating both DD-carboxypeptidases PBP5 and PBP6 and thereby demonstrating the versatility of BolA as a cellular regulator. In this work, we also demonstrate that reduction of cell growth and survival can be connected to the overexpression of the bolA gene in different E. coli backgrounds, particularly in the exponential growth phase. The most interesting finding is that overproduction of BolA affects bacterial growth differently depending on whether the cells were inoculated directly from a plate culture or from an overnight batch culture. This strengthens the idea that BolA can be engaged in the coordination of genes that adapt the cell physiology in order to enhance cell adaptation and survival under stress conditions.

Screening of Differentially Expressed Genes by Desferrioxamine or Ferric Ammonium Citrate Treatment in HepG2 Cells

  • Park, Jong-Hwan;Lee, Hyun-Young;Roh, Soon-Chang;Kim, Hae-Yeong;Yang, Young-Mok
    • BMB Reports
    • /
    • 제33권5호
    • /
    • pp.396-401
    • /
    • 2000
  • A differential display method is used to identify novel genes whose expression is affected by treatment with ferric ammonium citrate (FAC) or desferrioxamine (DFO), an iron chelating agent in the human hepatoblastoma cell line (HepG2). These chemicals are known to deplete or increase the intracellular concentration of iron, respectively. Initially, we isolated seventeen genes whose expressions are down- or up regulated by the treatment of the chemicals, as well as their four differentially expressed genes that are designated as clone-1, -2, -3, and -4. These are further characterized by cDNA sequencing and Northern blot analysis. Through the cDNA sequencing, as well as comparing them to genes published using the NCBI BLAST program, we identified the sequence of the clone-1 that is up-regulated by the treatment of DFO. It is identical to the human insulin-like growth factor binding protein-1 (IGFBP-1). This suggests that the IGFBP-1 gene in the HepG2 cell is up-regulated by an iron depletion condition. Also, the expression of the clone-3 and -4 is up-regulated by FAC treatment and their eDNA sequences are identical to the human ferritin-fight chain and human NADH-dehydrogenase, respectively. However, the sequence of the clone-2 has no significant homology to any other known gene. Therefore, we suggest that changes of the cellular iron level in the HepG2 cell affects the transcription of cellular genes. This includes human IGFBP-1, ferritin-fight chain, and NADH-dehydrogenase. Regulation of these gene expressions may have an important role in cellular functions that are related to cellular iron metabolism.

  • PDF

Anti-cancer and -Metastatic Effects of Lactobacillus Rhamnosus GG Extract on Human Malignant Melanoma Cells, A375P and A375SM

  • Lee, Jaehoon;Park, Sangkyu;Seo, Jeongmin;Roh, Sangho
    • International Journal of Oral Biology
    • /
    • 제42권3호
    • /
    • pp.107-115
    • /
    • 2017
  • Human malignant melanoma is an aggressive skin cancer which has been rising at a greater rate than any other cancers. Although various new therapeutic methods have been developed in previous studies, this disease has properties of high proliferation and metastasis rate which remain obstacles that have lead to a poor prognosis in patients. It has been reported that a specific Lactobacillus extract has anti-cancer and -metastasis effect in vitro and in vivo. However, previous research has not specified precisely what effect the Lactobacillus rhamnosus GG (LGG) extract has had on human malignant melanomas. In this study, we showed that the LGG extract has anti-cancer and -metastasis effects on the human malignant melanoma cell lines, A375P and A375SM. At first, it was found that, while the LGG extract affects human neonatal dermal fibroblasts slightly, it induced the dose-dependent anti-cancer effect on A375P and A375SM by a WST-1 proliferation assay. As a result of a real-time PCR analysis, the expression patterns of several genes related to cell cycle, proliferation, and apoptosis were modulating in a manner that inhibited the growth of both malignant melanoma cell lines after the treatment of the LGG extract. Furthermore, genes related to the epithelial-mesenchymal transition were down-regulated, and migration rates were also decreased significantly by the LGG extract. Our study showed that the LGG extract could be used as a potential therapeutic source.

Proteomics Analysis of Gastric Epithelial AGS Cells Infected with Epstein-Barr Virus

  • Ding, Yong;Li, Xiao-Rong;Yang, Kai-Yan;Huang, Li-Hua;Hu, Gui;Gao, Kai
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권1호
    • /
    • pp.367-372
    • /
    • 2013
  • Effects of the Epstein-Barr virus (EBV) on cellular protein expression are essential for viral pathogenesis. To characterize the cellular response to EBV infection, differential proteomes of gastric epithelial AGS cells were analyzed with two-dimensional gel electrophoresis (2-DE) followed by matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) and liquid chromatography electrospray/ionization ion trap (LC-ESI-IT) mass spectrometry identification. Mass spectrometry identified 9 altered cellular proteins, including 5 up-regulated and 4 down-regulated proteins after EBV infection. Notably 2-DE analysis revealed that EBV infection induced increased expression of heat shock cognate 71 kDa protein, actin cytoplasmic 1, pyridoxine-5'-phosphate oxidase, caspase 9, and t-complex protein 1 subunit alpha. In addition, EBV infection considerably suppressed those cellular proteins of zinc finger protein 2, cyclin-dependent kinase 2, macrophage-capping protein, and growth/differentiation factor 11. Furthermore, the differential expressional levels of partial proteins (cyclin-dependent kinase 2 and caspase 9) were confirmed by Western blot analysis.Thus, this work effectively provided useful protein-related information to facilitate further investigation of the mechanisms underlying EBV infection and pathogenesis.

Adaptive Interference Estimation For Cellular Mobile Communication Systems Using Directional Transmission and Performance Evaluation Based on System-Level Simulations (방향성 전송을 사용하는 셀룰러 이동 통신 시스템을 위한 간섭량 예측 방안 및 시스템 레벨 시뮬레이션을 통한 성능 분석)

  • Lee, Woongsup;Sung, Kil-Young
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • 제18권9호
    • /
    • pp.2117-2123
    • /
    • 2014
  • To cope with the explosive growth of traffic which is considered as one of the most biggest threat to current mobile communication systems, various solutions such as small cell and device-to-device communication have been exploited. Directional transmission in which transmission power of base station is focused onto the direction where the mobile station is located, can be used to increase throughput of the system. In this work, we develop a system-level simulator for cellular mobile communication systems using directional transmission and adaptive interference estimation scheme for directional transmission has been proposed. By using the developed simulator, the performance of cellular mobile communication systems with directional transmission is examined. Moreover, it is shown that the overall throughput of cellular system can be improved by utilizing directional transmission.

Expression of a Glutathione Reductase from Brassica rapa subsp. pekinensis Enhanced Cellular Redox Homeostasis by Modulating Antioxidant Proteins in Escherichia coli

  • Kim, Il-Sup;Shin, Sun-Young;Kim, Young-Saeng;Kim, Hyun-Young;Yoon, Ho-Sung
    • Molecules and Cells
    • /
    • 제28권5호
    • /
    • pp.479-487
    • /
    • 2009
  • Glutathione reductase (GR) is an enzyme that recycles a key cellular antioxidant molecule glutathione (GSH) from its oxidized form (GSSG) thus maintaining cellular redox homeostasis. A recombinant plasmid to overexpress a GR of Brassica rapa subsp. pekinensis (BrGR) in E. coli BL21 (DE3) was constructed using an expression vector pKM260. Expression of the introduced gene was confirmed by semi-quantitative RT-PCR, immunoblotting and enzyme assays. Purification of the BrGR protein was performed by IMAC method and indicated that the BrGR was a dimmer. The BrGR required NADPH as a cofactor and specific activity was approximately 458 U. The BrGR-expressing E. coli cells showed increased GR activity and tolerance to $H_2O_2$, menadione, and heavy metal ($CdCl_2$, $ZnCl_2$ and $AlCl_2$)-mediated growth inhibition. The ectopic expression of BrGR provoked the co-regulation of a variety of antioxidant enzymes including catalase, superoxide dismutase, glutathione peroxidase, and glucose-6-phosphate dehydrogenase. Consequently, the transformed cells showed decreased hydroperoxide levels when exposed to stressful conditions. A proteomic analysis demonstrated the higher level of induction of proteins involved in glycolysis, detoxification/oxidative stress response, protein folding, transport/binding proteins, cell envelope/porins, and protein translation and modification when exposed to $H_2O_2$ stress. Taken together, these results indicate that the plant GR protein is functional in a cooperative way in the E. coli system to protect cells against oxidative stress.

Tenovin-1 Induces Senescence and Decreases Wound-Healing Activity in Cultured Rat Primary Astrocytes

  • Bang, Minji;Ryu, Onjeon;Kim, Do Gyeong;Mabunga, Darine Froy;Cho, Kyu Suk;Kim, Yujeong;Han, Seol-Heui;Kwon, Kyoung Ja;Shin, Chan Young
    • Biomolecules & Therapeutics
    • /
    • 제27권3호
    • /
    • pp.283-289
    • /
    • 2019
  • Brain aging induces neuropsychological changes, such as decreased memory capacity, language ability, and attention; and is also associated with neurodegenerative diseases. However, most of the studies on brain aging are focused on neurons, while senescence in astrocytes has received less attention. Astrocytes constitute the majority of cell types in the brain and perform various functions in the brain such as supporting brain structures, regulating blood-brain barrier permeability, transmitter uptake and regulation, and immunity modulation. Recent studies have shown that SIRT1 and SIRT2 play certain roles in cellular senescence in peripheral systems. Both SIRT1 and SIRT2 inhibitors delay tumor growth in vivo without significant general toxicity. In this study, we investigated the role of tenovin-1, an inhibitor of SIRT1 and SIRT2, on rat primary astrocytes where we observed senescence and other functional changes. Cellular senescence usually is characterized by irreversible cell cycle arrest and induces senescence- associated ${\beta}$-galactosidase (SA-${\beta}$-gal) activity. Tenovin-1-treated astrocytes showed increased SA-${\beta}$-gal-positive cell number, senescence-associated secretory phenotypes, including IL-6 and IL-$1{\beta}$, and cell cycle-related proteins like phospho-histone H3 and CDK2. Along with the molecular changes, tenovin-1 impaired the wound-healing activity of cultured primary astrocytes. These data suggest that tenovin-1 can induce cellular senescence in astrocytes possibly by inhibiting SIRT1 and SIRT2, which may play particular roles in brain aging and neurodegenerative conditions.

3GPP Standardization Activity for Small Cell Enhancement (3GPP 소형셀 향상 표준화 기술 동향)

  • Baek, SeungKwon;Chang, SungCheol
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 한국정보통신학회 2014년도 추계학술대회
    • /
    • pp.628-631
    • /
    • 2014
  • Recently, the proliferation of new applications, e.g., mobile TV, Internet gaming, large file transfer, and the various of user terminals, e.g., smart phones and notebooks, has dramatically increased user traffic and network load. In order to meet this traffic growth, vendors and cellular operators are working on the development of new technologies and cellular standards. Within them, small cell deployment has been heralded as one of most promising way to increase both coverage and capacity of future cellular network. Small cell technology enables to improve capacity of cellular radio network by tight cooperation between small cell and macro cell in multi-tier network where small cells are densely deployed within macro cell coverage. In this paper, we describe the deployment scenarios for cooperation between macro cell and small cells and state-of-the-art technologies related to dense small cell deployment. Then, we also provide design principles and standardization trends for small cell enhancement in 3GPP.

  • PDF

A Study on Mechanical Properties Evaluation of Fiber-reinforced Plastic Cellular Injection-molded Specimens for the Development of High-strength Lightweight MHEV Battery Housing Molding Technology (고강성 경량 MHEV 배터리 하우징 성형기술개발을 위한 섬유강화 플라스틱 발포 사출 시험편의 기계적 물성평가에 관한 연구)

  • Eui-Chul Jeong;Yong-Dae Kim;Jeong-Won Lee;Sung-Hee Lee
    • Design & Manufacturing
    • /
    • 제17권3호
    • /
    • pp.55-60
    • /
    • 2023
  • The fiber-reinforced plastics and cellular injection molding process can be used to efficiently reduce the weight of battery housing components of mild hybrid electronic vehicles(MHEV) made of metal. However, the fiber orientation of fiber-reinforced plastics and the growth of foaming cells are intertwined during the injection molding process, so it is difficult to predict the mechanical properties of products in the design process. Therefore, it is necessary to evaluate the mechanical properties of the materials prior to the efficient stiffness design of the target product. In this study, a study was conducted to evaluated the mechanical properties of fiber reinforced cellular injection-molded specimens. Two types of fiber-reinforced plastics that can be used in the target product were evaluated for changes in tensile properties of cellular injection-molded specimens depending on the foaming ratio and position from the injection gate. The PP and PA66 specimens showed a decrease of tensile modulus and strength of approximately 30% and 17% depending on the foaming ratio, respectively. Also, the tensile strength decreased approximately 26% and 17% depending on the position from the injection gate, respectively. As a result, it was confirmed that the PP specimens have a significantly mechanical property degradation compared to the PA66 specimens depending on the foaming ratio and position.