• Title/Summary/Keyword: cellular growth

Search Result 1,494, Processing Time 0.032 seconds

Ovarian transcriptomic analysis of Shan Ma ducks at peak and late stages of egg production

  • Zhu, ZhiMing;Miao, ZhongWei;Chen, HongPing;Xin, QingWu;Li, Li;Lin, RuLong;Huang, QinLou;Zheng, NenZhu
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.9
    • /
    • pp.1215-1224
    • /
    • 2017
  • Objective: To assess the differences in ovarian transcriptomes in Shan Ma ducks between their peak and late stages of egg production, and to obtain new transcriptomic data of these egg-producing ducks. Methods: The Illumina HiSeq 2000 system was used for high throughput sequencing of ovarian transcriptomes from Shan Ma ducks at their peak or late stages of egg production. Results: Greater than 93% of the sequencing data had a base quality score (Q score) that was not less than 20 (Q20). From ducks at their peak stage of egg production, 42,782,676 reads were obtained, with 4,307,499,083 bp sequenced. From ducks at their late stage of egg production, 45,316,166 reads were obtained, with 4,562,063,363 bp sequenced. A comparison of the two datasets identified 2,002 differentially expressed genes, with 790 upregulated and 1,212 downregulated. Further analysis showed that 1,645 of the 2,002 differentially expressed genes were annotated in the non-redundant (NR) database, with 646 upregulated and 999 downregulated. Among the differentially expressed genes with annotations in the NR database, 696 genes were functionally annotated in the clusters of orthologous groups of proteins database, involving 25 functional categories. One thousand two hundred four of the differentially expressed genes with annotations in the NR database were functionally annotated in the gene ontology (GO) database, and could be divided into three domains and 56 categories. The three domains were cellular component, molecular function, and biological process. Among the genes identified in the GO database, 451 are involved in development and reproduction. Analysis of the differentially expressed genes with annotations in the NR database against the Kyoto encyclopedia of genes and genomes database revealed that 446 of the genes could be assigned to 175 metabolic pathways, of which the peroxisome proliferator-activated receptor signaling pathway, insulin signaling pathway, fructose and mannose metabolic pathways, gonadotropin releasing hormone signaling pathway and transforming growth factor beta signaling pathway were significantly enriched. Conclusion: The differences in ovarian transcriptomes in Shan Ma ducks between their peak and late stages of egg production were elucidated, which greatly enriched the ovarian transcriptomic information of egg-producing ducks.

Isolation and Characterization of Oxygen-tolerant Mutant of Bifidobacterium longum. (Bifidobacterium longum 산소변이주의 분리와 변이주의 산소내성)

  • 안준배;김광엽;박종현
    • Microbiology and Biotechnology Letters
    • /
    • v.26 no.6
    • /
    • pp.476-482
    • /
    • 1998
  • Growth sensitivity of bifidobacteria on oxygen hindered their industrial applications so that it was necessary to select oxygen-tolerant strains. Studies on their responses to oxygen might facilitate the effective utilization of bifidobacteria in industry. Oxygen-tolerant strain of Bifidobacterium longum JI-1 was able to remove 3% dissolved oxygen within 10 min whilst oxygen-sensitive strain of B. adolescentis, slime non-former, was not. The ability to remove environmental oxygen seemed to be related to the oxygen-tolerance of bifidobacteria. Mutant B. longum ADJ-1 was induced from the B. longum JI-1 under microaerobic atmosphere. There were no differences in sugar utilization pattern, NADH oxidative enzymes and cellular fatty acid compositions between them. The maximal cell density of the mutant was a little bit reduced to 81% of that of the mother strain. However, the mutant formed thick slime layer around its cell. The layer visualized with confocal scanning laser microscopy from the mutant was 6 ${\mu}{\textrm}{m}$ in diameter but that from the mother strain was only 3 ${\mu}{\textrm}{m}$. Therefore, the improved tolerances of the mutant might come from the slime layer, indicating the increase of the layer might be one of oxygen tolerance mechanisms for bifidobacteria.

  • PDF

Similarity of Gene Expression Profiles in Primary Brain Tumors with the Toxic Mechanism by Environmental Contaminants

  • Kim, Yu-Ri;Kim, Ki-Nam;Park, Yoon-Hee;Ryu, Yeon-Mi;Sohn, Sung-Hwa;Seo, Sang-Hui;Lee, Seung-Ho;Kim, Hye-Won;Lee, Kweon-Haeng;Kim, Meyoung-Kon
    • Molecular & Cellular Toxicology
    • /
    • v.1 no.3
    • /
    • pp.209-215
    • /
    • 2005
  • Recently, a large number of clinical experiments have shown that exposure of organic pollutants lead to various cancers through the abnormal cell growth. Environmental pollutants, such as 2, 3, 7, 8-Tetrachloro dibenzo-p-dioxin (TCDD) and polycyclic aromatic hydrocarbons (PAHs), are carcinogen and are known to cause the cognitive disability and motor dysfunction in the developing of brain. The effects of these pollutants on neurodevelopmental disorder is well established, but the underlying mechanism(s) and similarity of gene expression profiles in human brain tumors with organic pollutants still remain unclear. In this study, we first examined the gene expression profiles in glioblastomas compared with meningioma that are kinds of primary human brain tumor by using human cDNA microarray. The results of cDNA microarray analysis revealed that 26 genes were upregulated (Z-ratio>2.0) and 14 genes were downregulated (Z-ratio<-2.0) in glioblastoma compared with meningioma. From the altered gene patterns, mitogen-activated protein kinase (MAPK) signaling related genes, such as MAP2K3, MAP3K11 and jun activated domain binding protein, and transcription factors, such as UTF2 and TF12, were upregulated in glioblastoma. Also, we tried to investigate the relation between important genes up- and down-regulated in giloblastoma and various organic pollutants. Therefore, the identification of changes in the patterns of gene expression may provide a better understanding of the molecular mechanisms involved in human primary brain tumors and of the relation between gene expression profiles and organic pollutants in brain tissue.

Identification and Cultural Characterization of Antioxidant Producing Bacteria Isolated from the Jeju Coasts (제주 연안에서 분리한 항산화물질을 생산하는 균주의 동정 및 배양학적 특성)

  • Kim Man-Chul;Heo Moon-Soo
    • Journal of Life Science
    • /
    • v.15 no.5 s.72
    • /
    • pp.749-754
    • /
    • 2005
  • An antioxidant- producing bacterium was isolated from sea water in Jeju island. The isolated strain, SC2-1 was gram-positive, catalase positive, facultatively anaerobic, oxidase negative, motile and small rods. The strain utilized sucrose, dextrose, fructose, mannitol and maltose as a sole carbon and energy source and sodium chloride was required for the bacteria growth. The radical scavenging activity of the culture supernatants was determined by DPPH (1,1-diphenyl-2-picrylhydrazyl) method. This bacterium was identified based on cellular fatty acids analysis and 16S rDNA sequencing, and then named Exiguobacterium sp. SC2-1. The modified optimal medium compositions required the addition of maltose $2.5\%(w/v)$, yeast extract $1.5\%(w/v)$ and $KH_{2} PO_{4} 0.05\%(w/v)$ in marine broth (Difco. Co. USA). Antioxidant activity of under optimal culture conditions were $93\%$.

THE EFFECT OF HYALURONIC ACID ON EXPRESSION OF EXTRACELLULAR MATRIX PROTEINS AND BONE FORMATION IN RABBIT MANDIBULAR DISTRACTION OSTEOGENESIS (가토 하악골체부 신연 골형성술시 하이알우론산이 세포외 기질 단백질의 발현과 골형성에 미치는 영향)

  • Park, Ki-Nam;Song, Hyun-Chul;Jee, Yu-Jin;Yoo, Jin-Young
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.31 no.2
    • /
    • pp.116-129
    • /
    • 2005
  • Distraction osteogenesis is a new bone formation technique. There is a advantage of the environmental adaptation when distraction force is applied to the gap between osteotomy lines. But it has a disadvantage of long-term wearing of the appliance and long consolidation period. Therefore we make an effort to reduce it and repair normal function. Extracellular matrix proteins have a function to control the cellular growth, migration, shape and metabolism. In these, hyaluronic acid is a member of polysaccharide glycosaminoglycans (GAGs) and has a important function as bone formation and osteoinduction property. Purpose : In this experimental study in rabbit mandibular distraction osteogenesis, we investigated the bone enhancing property of hyaluronic acid and the expression of extracellular proteins such as osteocalcin and osteonectin. Materials and Methods : The experimental study was carried out on 24 Korean male white rabbits (both mandibular body, n=48). Distraction group was divided to distraction experimental (A, n=16) and distraction control (B, n=16) by the application of hyaluronic acid (Hyruan, LGCI, Seoul, Korea). Normal control group (C, n=16) was only osteotomized. After 5 days latency, distraction devices were activated at a rate of 1.4 mm per day (0.7 mm every 12hours) for 3.5 days. Animals were sacrificed at postoperative 3, 7, 14, and 28 days. H&E stain and immunohistochemical stain was done on decalcified section. Additionally RT-PCR analysis was done for the identification of the expression of osteocalcin and osteonectin. Results : The bone formation in distraction experimental group was much more than that in distraction and normal control group at postoperative 28 days. In immunohistochemical stain, osteocalcin was enhanced at only postoperative 14 days, but osteonectin was not different at each post-operation days. In RT-PCR analysis, osteocalcin was not different at each post-operation days, but osteonectin was strongly expressed in distraction experimental group at postoperative 7 days. The expression of osteocalcin and osteonectin was elevated during the healing period. Conclusion : We found the good bone formation ability of hyaluronic acid in distraction osteogenesis through the immunohistochemistry and RTPCR analysis to osteocalcin and osteonectin, known as a bone formation marker. The application of hyaluronic acid in distraction osteogenesis is a method to reduce the consolidation period.

Effects of all-trans retinoic acid on expression of Toll-like receptor 5 on immune cells (All-trans retinoic acid가 면역세포의 Toll-like receptor 5 발현에 미치는 영향)

  • Kim, Ki-Hyung;Park, Sang-Jun
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.36 no.6
    • /
    • pp.481-489
    • /
    • 2010
  • Introduction: TLR-5, a member of the toll-like receptor (TLR) family, is a element of the type I transmembrane receptors, which are characterized by an intracellular signaling domain homolog to the interleukin-1 receptor. These receptors recognize microbial components, particularly bacterial flagellin. All-trans retinoic acid (atRA, tretinoin), a natural metabolite of vitamin A, acts as a growth and differentiation factor in many tissues, and is also needed for immune functions. In this study, THP-1 human macrophage-monocytes were used to examine the mechanisms by which atRA regulated the expression of TLR-5. Because the molecular mechanism underlying this regulation at the transcriptional level is also unclear, this study examined which putative transcription factors are responsible for TLR-5 expression by atRA in immune cells. Materials and Methods: This study examined whether atRA induces the expression of TLR-5 in THP-1 cells using reverse transcription-polymerase chain reaction (RT-PCR), and which transcription factors are involved in regulating the TLR-5 promoter in RAW264.7 cells using a reporter assay system. Western blot analysis was used to determine which signal pathway is involved in the expression of TLR-5 in atRA-treated THP-1 cells. Results: atRA at a concentration of 10 nM greatly induced the expression of TLR-5 in THP-1 cells. Human TLR-5 promoter contains three Sp-1/GC binding sites around -50 bp and two NF-kB binding sites at -380 bp and -160 bp from the transcriptional start site of the TLR-5 gene. Sp-1/GC is primarily responsible for the constitutive TLR-5 expression, and may also contribute to NF-kB at -160 bp to induce TLR-5 after atRA stimulation in THP-1 cells. The role of NF-kB in TLR-5 expression was further confirmed by inhibitor pyrrolidine dithiocarbamate (PDTC) experiments, which greatly reduced the TLR-5 transcription by 70-80%. Conclusion: atRA induces the expression of the human TLR-5 gene and NF-kB is a critical transcription factor for the atRA-induced expression of TLR-5. Accordingly, it is conceivable that retinoids are required for adequate innate and adaptive immune responses to agents of infectious diseases. atRA and various synthetic retinoids have been used therapeutically in human diseases, such as leukemia and other cancers due to the antiproliferative and apoptosis inducing effects of retinoids. Therefore, understanding the molecular regulatory mechanism of TLR-5 may assist in the design of alternative strategies for the treatment of infectious diseases, leukemia and cancers.

Mechanism of FHIT-Induced Apoptosis in Lung Cancer Cell Lines (폐암 세포주에서 FHIT 유전자 이입에 의한 Apoptosis의 기전)

  • Yoo, Jung Sun;Kim, Cheol Hyeon
    • Tuberculosis and Respiratory Diseases
    • /
    • v.56 no.5
    • /
    • pp.450-464
    • /
    • 2004
  • Background : The FHIT (fragile histidine triad) gene is a frequent target of deletions associated with abnormal RNA and protein expression in lung cancer. Previous studies have shown FHIT gene transfer into lung cancer cell line lacking FHIT protein expression resulted in inhibition of tumor cell growth attributable to the induction of apoptosis and reversion of tumorigenecity. However, the mechanism of the tumor suppressor activity of the FHIT gene and the cellular pathways associated with its function are not completely understood. Methods : To gain insight into the biological function of FHIT, we compared the NCI-H358 cell line with its stable FHIT transfectants after treatment with cisplatin or paclitaxel. We investigated the effects of FHIT gene expression on cell proliferation, apoptosis, and activation of caspase system and Bcl-2 family. The induction of apoptosis was evaluated by using DAPI staining and flow cytometry. Activation of caspases and Bcl-2 members was evaluated by Western blot analysis. Results : A significantly increased cell death was observed in FHIT transfectants after cisplatin or paclitaxel treatment and this was attributable to the induction of apoptosis. Remarkable changes in caspases and Bcl-2 family were observed in the transfected cells as compared with the control cells after treatment with paclitaxel. Activation of caspase-3 and caspase-7 was markedly increased in cells expressing FHIT. Expression level of Bcl-2 and Bcl-xL protein was significantly decreased and that of Bax and Bad protein was significantly increased in the transfected cells. Conclusion : FHIT gene delivery into lung cancer cells results in enhanced apoptosis induced by treatment with cisplatin or paclitaxel. The data suggest that apoptosis in FHIT-expressing cells could be related to activation of caspase pathway and Bcl-2 family.

MiR-204 acts as a potential therapeutic target in acute myeloid leukemia by increasing BIRC6-mediated apoptosis

  • Wang, Zhiguo;Luo, Hong;Fang, Zehui;Fan, Yanling;Liu, Xiaojuan;Zhang, Yujing;Rui, Shuping;Chen, Yafeng;Hong, Luojia;Gao, Jincheng;Zhang, Mei
    • BMB Reports
    • /
    • v.51 no.9
    • /
    • pp.444-449
    • /
    • 2018
  • Acute myeloid leukemia (AML) is one of the most common hematological malignancies all around the world. MicroRNAs have been determined to contribute various cancers initiation and progression, including AML. Although microRNA-204 (miR-204) exerts anti-tumor effects in several kinds of cancers, its function in AML remains unknown. In the present study, we assessed miR-204 expression in AML blood samples and cell lines. We also investigated the effects of miR-204 on cellular function of AML cells and the underlying mechanisms of the action of miR-204. Our results showed that miR-204 expression was significantly downregulated in AML tissues and cell lines. In addition, overexpression of miR-204 induced growth inhibition and apoptosis in AML cells, including AML5, HL-60, Kasumi-1 and U937 cells. Cell cycle analysis further confirmed an augmentation in theapoptotic subG1 population by miR-204 overexpression. Mechanistically, baculoviral inhibition of apoptosis protein repeat containing 6 (BIRC6) was identified as a direct target of miR-204. Enforcing miR-204 expression increased the luciferase activity and expression of BIRC6, as well as p53 and Bax expression. Moreover, restoration of BIRC6 reversed the pro-apoptotic effects of miR-204 overexpression in AML cells. Taken together, this study demonstrates that miR-204 causes AML cell apoptosis by targeting BIRC6, suggesting miR-204 may play an anti-carcinogenic role in AML and function as a novel biomarker and therapeutic target for the treatment of this disease.

Anticancer Effect of Citrus Fruit Prepared by Gamma Irradiation of Budsticks (감귤 돌연변이체의 인간 암세포 증식 억제와 자연사멸 증강효과)

  • Kim, Ji Hye;Kim, Min Young
    • Journal of Life Science
    • /
    • v.25 no.9
    • /
    • pp.1051-1058
    • /
    • 2015
  • Citrus mutant fruits were induced by irradiation of citrus budsticks with 120 Gy of cobalt (60CO) gamma irradiation. The citrus mutant inhibited the growth and induced apoptosis in various human cancer cells, including A549, HepG2, HCT116, MCF-7, and Hela. The results of a trypan blue exclusion assay showed that citrus mutant fruits exhibited excellent antiproliferation activity in various human cancer cells and low cytotoxicity in normal 16HBE140- and CHANG cells. In addition, the cell death induced by the citrus mutant fruits was associated with an increased population of cells in sub-G1 phase, and it caused DNA fragmentation in human lung adenocarcinoma A549 and hepatocellular carcinoma HepG2 cells. It also up-regulated the amount of cellular nitric oxide (NO) produced as a result of nitric oxide synthase (NOS) activation and suppressed the inhibitor of apoptosis protein (IAP) family in A549 and HepG2 cells. These findings indicate that the citrus mutant fruits activates the NO-mediated apoptotic pathway in A549 and HepG2 cells. It may merit further investigation as a potential chemotherapeutic and chemopreventive agent for the treatment of various types of cancer cells. The results provide important major new insights into the mechanisms of the anticancer activity of citrus mutant fruits.

Endogenous Nitric Oxide Strengthens Doxorubicin-induced Apoptosis in Human Colorectal Cell Lines (Doxorubicin에 의한 내인성 산화질소가 인간 대장암 세포주에서의 세포사멸에 미치는 효과)

  • Im, Soon Jae;Kim, Ji Hye;Kim, Min Young
    • Journal of Life Science
    • /
    • v.24 no.10
    • /
    • pp.1137-1143
    • /
    • 2014
  • Doxorubicin is a general chemotherapy drug widely used for a number of cancers. However, the correlation between endogenous nitric oxide ($NO^{\bullet}$) levels and chemoresistance to doxorubicin remains unclear. In this study, we investigated the effect of endogenous $NO^{\bullet}$ on the anticancer activity of doxorubicin in human colon cancer cell lines HCT116 and HT29 with different p53 status. The cells were treated with either doxorubicin alone or in combination with the $NO^{\bullet}$ synthase (NOS) inhibitor $N^G$-monomethyl-L-arginine (NMA). Doxorubicin differentially inhibited the growth of both the HCT116 (p53-WT) and HT29 (p53-MUT) cells, which was mitigated by cotreatment with NMA. Further studies revealed that inhibition of endogenous $NO^{\bullet}$ mitigated doxorubicin-induced apoptosis in the HCT116 and HT29 cells, as evidenced by apoptotic DNA fragmentation and the sub-G1 peak of apoptotic markers. Apoptosis was delayed in the HT29 cells, and its magnitude was greatly reduced, underscoring the importance of the modulation of p53 in the response. RT-PCR analysis revealed that doxorubicin down-regulated levels of inhibitors of the apoptosis family (cellular IAP-1 and-2). Collectively, these data show that induction of apoptosis by doxorubicin in human colon cancer cells is possibly related to modulation of endogenous $NO^{\bullet}$, the expression of the IAP family of genes, and the status of p53. The underlying mechanisms may represent potential targets for adjuvant strategies to improve the efficacy of chemotherapy for colon cancer.