• Title/Summary/Keyword: cellular growth

Search Result 1,494, Processing Time 0.022 seconds

Hypoxia-Inducible Factor-1 Alpha Stabilization in Human Macrophages during Leishmania major Infection Is Impaired by Parasite Virulence

  • Ben-Cheikh, Ali;Bali, Aymen;Guerfali, Fatma Z;Atri, Chiraz;Attia, Hanene;Laouini, Dhafer
    • Parasites, Hosts and Diseases
    • /
    • v.60 no.5
    • /
    • pp.317-325
    • /
    • 2022
  • Hypoxia-inducible factor-1 alpha (HIF-1α) is one of the master regulators of immune and metabolic cellular functions. HIF-1α, a transcriptional factor whose activity is closely related to oxygen levels, is a target for understanding infectious disease control. Several studies have demonstrated that HIF-1α plays an important role during the infectious process, while its role in relation to parasite virulence has not been addressed. In this work, we studied the expression levels of HIF-1α and related angiogenic vascular endothelial growth factor A (VEGF-A) in human macrophages infected with promastigotes of hypo- or hyper-virulent Leishmania major human isolates. L. major parasites readily subverted host macrophage functions for their survival and induced local oxygen consumption at the site of infection. In contrast to hypo-virulent parasites that induce high HIF-1α expression levels, hyper-virulent L. major reduced HIF-1α expression in macrophages under normoxic or hypoxic conditions, and consequently impeded the expression of VEGF-A mRNA. HIF-1α may play a key role during control of disease chronicity, severity, or outcome.

Molecular Characteristics and Potent Immunomodulatory Activity of Fasciola hepatica Cystatin

  • Zhang, Kai;Liu, Yucheng;Zhang, Guowu;Wang, Xifeng;Li, Zhiyuan;Shang, Yunxia;Ning, Chengcheng;Ji, Chunhui;Cai, Xuepeng;Xia, Xianzhu;Qiao, Jun;Meng, Qingling
    • Parasites, Hosts and Diseases
    • /
    • v.60 no.2
    • /
    • pp.117-126
    • /
    • 2022
  • Cystatin, a cysteine protease inhibitor found in many parasites, plays important roles in immune evasion. This study analyzed the molecular characteristics of a cystatin from Fasciola hepatica (FhCystatin) and expressed recombinant FhCystatin (rFhcystatin) to investigate the immune modulatory effects on lipopolysaccharide-induced proliferation, migration, cytokine secretion, nitric oxide (NO) production, and apoptosis in mouse macrophages. The FhCystatin gene encoded 116 amino acids and contained a conserved cystatin-like domain. rFhCystatin significantly inhibited the activity of cathepsin B. rFhCystatin bound to the surface of mouse RAW264.7 cells, significantly inhibited cell proliferation and promoted apoptosis. Moreover, rFhCystatin inhibited the expression of cellular nitric oxide, interleukin-6, and tumor necrosis factor-α, and promoted the expression of transforming growth factor-β and interleukin-10. These results showed that FhCystatin played an important role in regulating the activity of mouse macrophages. Our findings provide new insights into mechanisms underlying the immune evasion and contribute to the exploration of potential targets for the development of new drug to control F. hepatica infection.

Helicobacter pylori-Induced Progranulin Promotes the Progression of the Gastric Epithelial Cell Cycle by Regulating CDK4

  • Ren, Zongjiao;Li, Jiayi;Du, Xianhong;Shi, Wenjing;Guan, Fulai;Wang, Xiaochen;Wang, Linjing;Wang, Hongyan
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.7
    • /
    • pp.844-854
    • /
    • 2022
  • Helicobacter pylori, a group 1 carcinogen, colonizes the stomach and affects the development of stomach diseases. Progranulin (PGRN) is an autocrine growth factor that regulates multiple cellular processes and plays a tumorigenic role in many tissues. Nevertheless, the mechanism of action of PGRN in gastric cancer caused by H. pylori infection remains unclear. Here, we investigated the role of PGRN in cell cycle progression and the cell proliferation induced by H. pylori infection. We found that the increased PGRN was positively associated with CDK4 expression in gastric cancer tissue. PGRN was upregulated by H. pylori infection, thereby promoting cell proliferation, and that enhanced level of proliferation was reduced by PGRN inhibitor. CDK4, a target gene of PGRN, is a cyclin-dependent kinase that binds to cyclin D to promote cell cycle progression, which was upregulated by H. pylori infection. We also showed that knockdown of CDK4 reduced the higher cell cycle progression caused by upregulated PGRN. Moreover, when the PI3K/Akt signaling pathway (which is promoted by PGRN) was blocked, the upregulation of CDK4 mediated by PGRN was reduced. These results reveal the potential mechanism by which PGRN plays a major role through CDK4 in the pathological mechanism of H. pylori infection.

Effect of Hibisci Flos on Inflammatory Cytokines Production in lipopolysaccaride-stimulated Raw 264.7 Macrophages (목근화(木槿花) 물추출물의 항염효능에 관한 연구)

  • Lee, Dong-Min;Han, Hyo-Sang;Lee, Young-Jong
    • The Korea Journal of Herbology
    • /
    • v.28 no.5
    • /
    • pp.61-68
    • /
    • 2013
  • Objectives : Hibisci Flos has long been used for inflammatory diseases in traditional Korean medicine. However, little scientific investigation has been carried out. The aim of the present study is to investigate the effect of Hibisci Flos water extract (HF) on inflammatory cytokines production in Raw 264.7 cells stimulated by lipopolysaccaride (LPS). Method : HF was prepared by extracting with boiling water for 2 hours. We observed the cell viability of mouse macrophage Raw 264.7, the production of nitric oxide (NO) and the inflammatory cytokines such as interleukin (IL)-4, IL-5, IL-10, IL-15, tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$), interferon-gamma (IFN-${\gamma}$), vascular endothelial growth factor (VEGF), granulocyte macrophage-colony stimulating factor (GM-CSF), and macrophage colony-stimulating factor (M-CSF) in Raw 264.7 cells stimulated by LPS. Result : The MTT assay was carried out to check the cellular toxicity of HF. No significant toxicity was observed in the experiment. HF significantly inhibited the increase of NO in the macrophages induced by LPS after 24 hour treatment. HF significantly inhibited the production of IL-4, IL-5, IL-10, IL-15, TNF-${\alpha}$, IFN-${\gamma}$, VEGF, GM-CSF and M-CSF in the Raw 264.7 cells induced by LPS in the concentration of $25{\mu}g/mL$ or higher. Conclusion : These results suggest that HF might have regulatory effects on LPS-induced inflammatory cytokine production, which might explain its beneficial effect in the treatment of inflammatory disease.

Transcriptional Regulatory Role of NELL2 in Preproenkephalin Gene Expression

  • Ha, Chang Man;Kim, Dong Hee;Lee, Tae Hwan;Kim, Han Rae;Choi, Jungil;Kim, Yoonju;Kang, Dasol;Park, Jeong Woo;Ojeda, Sergio R.;Jeong, Jin Kwon;Lee, Byung Ju
    • Molecules and Cells
    • /
    • v.45 no.8
    • /
    • pp.537-549
    • /
    • 2022
  • Preproenkephalin (PPE) is a precursor molecule for multiple endogenous opioid peptides Leu-enkephalin (ENK) and Met-ENK, which are involved in a wide variety of modulatory functions in the nervous system. Despite the functional importance of ENK in the brain, the effect of brain-derived factor(s) on PPE expression is unknown. We report the dual effect of neural epidermal growth factor (EGF)-like-like 2 (NELL2) on PPE gene expression. In cultured NIH3T3 cells, transfection of NELL2 expression vectors induced an inhibition of PPE transcription intracellularly, in parallel with downregulation of protein kinase C signaling pathways and extracellular signal-regulated kinase. Interestingly, these phenomena were reversed when synthetic NELL2 was administered extracellularly. The in vivo disruption of NELL2 synthesis resulted in an increase in PPE mRNA level in the rat brain, suggesting that the inhibitory action of intracellular NELL2 predominates the activation effect of extracellular NELL2 on PPE gene expression in the brain. Biochemical and molecular studies with mutant NELL2 structures further demonstrated the critical role of EGF-like repeat domains in NELL2 for regulation of PPE transcription. These are the first results to reveal the spatio-specific role of NELL2 in the homeostatic regulation of PPE gene expression.

Prophylactic role of Korean Red Ginseng in astrocytic mitochondrial biogenesis through HIF-1α

  • Park, Jinhong;Lee, Minjae;Kim, Minsu;Moon, Sunhong;Kim, Seunghee;Kim, Sueun;Koh, Seong-Ho;Kim, Young-Myeong;Choi, Yoon Kyung
    • Journal of Ginseng Research
    • /
    • v.46 no.3
    • /
    • pp.408-417
    • /
    • 2022
  • Background: Korean Red Ginseng extract (KRGE) has been used as a health supplement and herbal medicine. Astrocytes are one of the key cells in the central nervous system (CNS) and have bioenergetic potential as they stimulate mitochondrial biogenesis. They play a critical role in connecting the brain vasculature and nerves in the CNS. Methods: Brain samples from KRGE-administered mice were tested using immunohistochemistry. Treatment of human brain astrocytes with KRGE was subjected to assays such as proliferation, cytotoxicity, Mitotracker, ATP production, and O2 consumption rate as well as western blotting to demonstrate the expression of proteins related to mitochondria functions. The expression of hypoxia-inducible factor-1α (HIF-1α) was diminished utilizing siRNA transfection. Results: Brain samples from KRGE-administered mice harbored an increased number of GFAP-expressing astrocytes. KRGE triggered the proliferation of astrocytes in vitro. Enhanced mitochondrial biogenesis induced by KRGE was detected using Mitotracker staining, ATP production, and O2 consumption rate assays. The expression of proteins related to mitochondrial electron transport was increased in KRGE-treated astrocytes. These effects were blocked by HIF-1α knockdown. The factors secreted from KRGE-treated astrocytes were determined, revealing the expression of various cytokines and growth factors, especially those related to angiogenesis and neurogenesis. KRGE-treated astrocyte conditioned media enhanced the differentiation of adult neural stem cells into mature neurons, increasing the migration of endothelial cells, and these effects were reduced in the background of HIF-1α knockdown. Conclusion: Our findings suggest that KRGE exhibits prophylactic potential by stimulating astrocyte mitochondrial biogenesis through HIF-1α, resulting in improved neurovascular function.

The prominin-like Gene Expressed in a Subset of Dopaminergic Neurons Regulates Locomotion in Drosophila

  • Ryu, Tae Hoon;Subramanian, Manivannan;Yeom, Eunbyul;Yu, Kweon
    • Molecules and Cells
    • /
    • v.45 no.9
    • /
    • pp.640-648
    • /
    • 2022
  • CD133, also known as prominin-1, was first identified as a biomarker of mammalian cancer and neural stem cells. Previous studies have shown that the prominin-like (promL) gene, an orthologue of mammalian CD133 in Drosophila, plays a role in glucose and lipid metabolism, body growth, and longevity. Because locomotion is required for food sourcing and ultimately the regulation of metabolism, we examined the function of promL in Drosophila locomotion. Both promL mutants and pan-neuronal promL inhibition flies displayed reduced spontaneous locomotor activity. As dopamine is known to modulate locomotion, we also examined the effects of promL inhibition on the dopamine concentration and mRNA expression levels of tyrosine hydroxylase (TH) and DOPA decarboxylase (Ddc), the enzymes responsible for dopamine biosynthesis, in the heads of flies. Compared with those in control flies, the levels of dopamine and the mRNAs encoding TH and Ddc were lower in promL mutant and pan-neuronal promL inhibition flies. In addition, an immunostaining analysis revealed that, compared with control flies, promL mutant and pan-neuronal promL inhibition flies had lower levels of the TH protein in protocerebral anterior medial (PAM) neurons, a subset of dopaminergic neurons. Inhibition of promL in these PAM neurons reduced the locomotor activity of the flies. Overall, these findings indicate that promL expressed in PAM dopaminergic neurons regulates locomotion by controlling dopamine synthesis in Drosophila.

Downregulation of SETD5 Suppresses the Tumorigenicity of Hepatocellular Carcinoma Cells

  • Park, Mijin;Moon, Byul;Kim, Jong-Hwan;Park, Seung-Jin;Kim, Seon-Kyu;Park, Kihyun;Kim, Jaehoon;Kim, Seon-Young;Kim, Jeong-Hoon;Kim, Jung-Ae
    • Molecules and Cells
    • /
    • v.45 no.8
    • /
    • pp.550-563
    • /
    • 2022
  • Hepatocellular carcinoma (HCC) is an aggressive and incurable cancer. Although understanding of the molecular pathogenesis of HCC has greatly advanced, therapeutic options for the disease remain limited. In this study, we demonstrated that SETD5 expression is positively associated with poor prognosis of HCC and that SETD5 depletion decreased HCC cell proliferation and invasion while inducing cell death. Transcriptome analysis revealed that SETD5 loss downregulated the interferon-mediated inflammatory response in HCC cells. In addition, SETD5 depletion downregulated the expression of a critical glycolysis gene, PKM (pyruvate kinase M1/2), and decreased glycolysis activity in HCC cells. Finally, SETD5 knockdown inhibited tumor growth in xenograft mouse models. These results collectively suggest that SETD5 is involved in the tumorigenic features of HCC cells and that targeting SETD5 may suppress HCC progression.

Protective effect and mechanism of ginsenoside Rg2 on atherosclerosis

  • Qianqian Xue;Tao Yu;Zhibin Wang;Xiuxiu Fu;Xiaoxin Li;Lu Zou;Min Li;Jae Youl Cho;Yanyan Yang
    • Journal of Ginseng Research
    • /
    • v.47 no.2
    • /
    • pp.237-245
    • /
    • 2023
  • Background: Ginsenoside Rg2 (Rg2) has a variety of pharmacological activities and provides benefits during inflammation, cancer, and other diseases. However, there are no reports about the relationship between Rg2 and atherosclerosis. Methods: We used 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) to detect the cell viability of Rg2 in vascular smooth muscle cells (VSMCs) and human umbilical vein endothelial cells (HUVECs). The expression of inflammatory factors in HUVECs and the expression of phenotypic transformation-related marker in VSMCs were detected at mRNA levels. Western blot method was used to detect the expression of inflammation pathways and the expression of phenotypic transformation at the protein levels. The rat carotid balloon injury model was performed to explore the effect of Rg2 on inflammation and phenotypic transformation in vivo. Results: Rg2 decreased the expression of inflammatory factors induced by lipopolysaccharide in HUVECs-without affecting cell viability. These events depend on the blocking regulation of NF-κB and p-ERK signaling pathway. In VSMCs, Rg2 can inhibit the proliferation, migration, and phenotypic transformation of VSMCs induced by platelet derived growth factor-BB (PDGF-BB)-which may contribute to its anti-atherosclerotic role. In rats with carotid balloon injury, Rg2 can reduce intimal proliferation after injury, regulate the inflammatory pathway to reduce inflammatory response, and also suppress the phenotypic transformation of VSMCs. Conclusion: These results suggest that Rg2 can exert its anti-atherosclerotic effect at the cellular level and animal level, which provides a more sufficient basis for ginseng as a functional dietary regulator.

Inhibitory effect of ginsenglactone A from Panax ginseng on the tube formation of human umbilical vein endothelial cells and migration of human ovarian cancer cells

  • Dahae Lee;Ranhee Kim;So-Ri Son;Ji-Young Kim;Sungyoul Choi;Ki Sung Kang;Dae Sik Jang
    • Journal of Ginseng Research
    • /
    • v.47 no.2
    • /
    • pp.246-254
    • /
    • 2023
  • Background: Here, we aimed to assess the inhibitory effect of a new compound from Panax ginseng on the migration of human ovarian cancer cells and tube formation of human umbilical vein endothelial cells (HUVECs). Methods: A new compound, ginsenglactone A (1), was isolated from ginseng roots, together with seven known compounds (2-8). Spectroscopic data were used to elucidate the chemical structure of 1. The tubular structure formation in HUVECs was assessed by Mayer's hematoxylin staining. The migration of A2780 cells was evaluated using the scratch wound healing assay. Results: HUVECs treated with 1 had the statistically significant decrease in tubular structure formation compared to the HUVECs treated with compounds 2-8. This effect was enhanced by co-treatment with inhibitors for phosphatidylinositol 3-kinase (PI3K) (LY294002) and extracellular signal-regulated kinase (ERK) (U0126). Treatment with 1 decreased the expression of phosphorylation of ERK, PI3K, vascular endothelial growth factor receptor2 (VEGFR2), Akt, and mammalian target of rapamycin (mTOR). In addition, the ability of A2780 cells to cover the scratched area were also decreased. This effect was enhanced by co-treatment with U0126. Lastly, treatment with 1 decreased the phosphorylation of ERK, matrix metalloproteinase-9 (MMP-9), and MMP-2. Conclusion: These results suggest that ginsenglactone A is a potential inhibitor of HUVEC tubular structure formation and A2780 cellular migration, which may be helpful for understanding its anticancer mechanism.