• 제목/요약/키워드: cellular growth

검색결과 1,494건 처리시간 0.034초

A5E promotes Cell growth Arrest and Apoptosis in Non Small Cell Lung Cancer

  • Bak, Ye Sol;Ham, Sun Young;O, Baatartsogt;Jung, Seung Hyun;Choi, Kang Duk;Han, Tae Young;Han, Il Young;Yoon, Do-Young
    • Journal of Applied Biological Chemistry
    • /
    • 제57권2호
    • /
    • pp.113-122
    • /
    • 2014
  • A5E is complex of several medicinal herb ethanol extracts. The aim of this study is investigating the anticancer effect for non-small cell lung cancer. The antitumor effects of A5E on NCI-H460 were examined by regulation of cell proliferation, apoptosis, cell cycle arrest, mitochondrial membrane potential (${\Delta}{\Psi}_m$), and apoptosis-related protein. Cell proliferation was measured by MTS assay. Apoptosis induced by A5E was confirmed by Annexin V-fluorescein isothiocyanate (FITC)/Propidium Iodide (PI) staining, and cell cycle arrest was measured by PI staining. NF-${\kappa}B$ translocation was detected by immunofluorescence and MMP (${\Delta}{\Psi}_m$) was measured by JC-1 staining. The expression of extrinsic pathway molecules such as FasL and FADD were elevated, and procaspase-8 was processed by A5E. In addition, intrinsic pathway related molecules were altered. The Bcl-2 and Bcl-xl levels decreased, Bax increased, and cytochrome C was released. In addition, the mitochondrial membrane potential collapsed, and caspase-3 and poly-(ADP-ribose) polymerase were processed by A5E. Moreover, A5E affected the cellular survival pathway involving phosphatidylinositol 3-kinase (PI3K)/Akt and NF-${\kappa}B$. PI3K and Akt were downregulated, also NF-${\kappa}B$ expression was decreased, and nuclear translocalization was inhibited by A5E. These results suggested that A5E delays proliferation, inhibit cell cycle progression and induce apoptosis in human lung cancer cell. We conclude that A5E is a potential anticancer agent for human lung carcinoma.

한국 이동통신시장에서 서비스품질과 전환장벽이 고객만족과 고객충성도에 미치는 영향 (The Effects of Cellular Phone Service Quality and Switching Barrier to Customer Satisfaction and Loyalty in Korean Mobile Telecommunication Market)

  • 주형률;이진춘
    • 한국IT서비스학회지
    • /
    • 제9권2호
    • /
    • pp.43-72
    • /
    • 2010
  • The Korean mobile telecommunication service market is faced with a tremendous competitive period, in which the market is entering into the maturity stage with launching of the 3rd generation service and with introduction of mobile number portability. In general, it is more important to sustain the old customers than to attracting new customers, as the life cycle of an industry is entering the maturity stage in which the growth rate of new customers is decreasing gradually or becoming stagnant. Until now, many researches had tested whether the customer satisfaction and loyalty were the core factors of sustaining customers or not. Also service quality and switching cost were given a remarkable attention for their possibility of exogenous factors, which could exercise effects to customer satisfaction and loyalty. In the same context, mobile telecommunication business has to seek a way to maintain the existing customers instead of promoting new customers. So this study investigates whether the service quality and switching barrier of mobile telecommunication could have effects on the customer satisfaction and loyalty, which are recognized as an efficient means to sustain the current customers. In order to test the hypothesis on the effects of service quality and switching barrier of mobile telecommunication to customer satisfaction and loyalty in Korean telecommunication industry, this study collected the questionnaire response data of students including middle and high school students and undergraduates, who are regarded as the major customers in that mobile telecommunication industry.

비정상적인 세포증식이 유도된 혈관 내피세포에서 Protein Kinase C에 대한 활성 분석 (Activity of Protein Kinase C in Abnormally Proliferated Vascular Endothelial Cells)

  • 배용찬;박숙영;남수봉;문재술;최수종
    • Archives of Plastic Surgery
    • /
    • 제34권1호
    • /
    • pp.13-17
    • /
    • 2007
  • Purpose: To understand the pathogenesis of the disease that presents abnormally proliferated vascular endothelial cells, a model of DMH(1,2-dimethylhydrazine)-induced abnormal proliferation of HUVECs(Human Umbilical Vein Endothelial Cells) was made. We indirectly determined that Protein Kinase C(PKC) restricts the cellular proliferation and inhibits the manifestation of growth factor by using several inhibiting substances of the transmitter through our previous studies. Thereupon, we attempted to observe direct enzymatic activities of PKC and its correlation with the abnormal proliferation of vascular endothelial cells. Methods: $10^5$ HUVECs cells were applied to 6 individual well plates in three different groups; A control group cultured without treatment, a group concentrated with $0.75{\times}10^{-8}M$ DMH only, and a group treated with DMH & $5{\times}10^{-9}M$ Calphostin C, inhibitor of PKC. In analyzing the formation of intracellular PKC enzyme, protein separation was performed, and separated protein was quantitatively measured. PKC enzyme reaction was analyzed through Protein Kinase C Assay System (Promega, USA), and the results were analyzed according to Beer's law. Results: Enzymatic activity of PKC presented the highest in all reaction time of a group concentrated only with DMH, and the lowest in the control group. The group treated with DMH and the inhibitor revealed statistically lower enzymatic activity than group only with DMH in all reaction time, although higher than the control group. Conclusion: From the enzymatic aspect, most active and immediate reaction of the PKC was observed in the group concentrated with DMH only. The group treated with DMH & PKC inhibitor showed meaningful decrease. Accordingly, PKC holds a significant role in DMH-induced abnormal proliferation of vascular endothelial cells.

스트론튬(Strontium)이 도핑된 다공성 BCP 뼈 이식제가 조골세포에 미치는 영향 (Effect of Strontium Doped Porous BCP as Bone Graft Substitutes on Osteoblast)

  • 변인선;;서형석;이병택;송호연
    • 한국재료학회지
    • /
    • 제20권3호
    • /
    • pp.155-160
    • /
    • 2010
  • In this study, we investigated primary biocompatibility and osteogenic gene expression of porous granular BCP bone substitutes with or without strontium (Sr) doping. In vitro biocompatibility was investigated on fibroblasts like L929 cells and osteoblasts like MG-63 cells using a cell viability assay (MTT) and one cell morphological observation by SEM, respectively. MTT results showed a cell viability percent of L929 fibroblasts, which was higher in Sr-BCP granules (98-101%) than in the non-doped granules (92-96%, p < 0.05). Osteoblasts like MG-63 cells were also found to proliferate better on Sr-doped BCP granules (01-111%) than on the non-doped ones (92-99%, p < 0.05) using an MTT assay. As compared with pure BCP granules, SEM images of MG-63 cells grown on sample surfaces confirmed that cellular spreading, adhesion and proliferation were facilitated by Sr doping on BCP. Active filopodial growth of MG-63 cells was also observed on Sr-doped BCP granules. The cells on Sr-doped BCP granules were well attached and spread out. Gene expression of osteonectin, osteopontin and osteoprotegrin were also evaluated using reverse transcriptase polymerase chain reaction (RT-PCR), which showed that the mRNA phenotypes of these genes were well maintained and expressed in Sr-doped BCP granules. These results suggest that Sr doping in a porous BCP granule can potentially enhance the biocompatibility and bone ingrowth capability of BCP biomaterials.

영양혈청 결핍성 PC12 세포고사에서 HO-1의 발현 증가를 통한 환소단의 보호 효과 (Protective Effect of Hwansodan in Serum and Glucose Deprivation Induced-apoptotic Death of PC12 Cells Via Ho-1 Expression)

  • 정재은;김진경;강백규;박찬희;박래길;문병순
    • 동의생리병리학회지
    • /
    • 제20권6호
    • /
    • pp.1459-1466
    • /
    • 2006
  • The water extract of Hwansodan has been traditionally used for treatment of ischemic brain damage in oriental medicine. However, little is known about the mechanism by which the water extract of Hwansodan rescues cells from neurodegenerative disease. PC12 pheochromocytoma cells have been used extensively as a model for studying the cellular and molecular mechanisms of neuronal cell damages. Under deprivation of growth factor and ischemic injury, PC12 cells spontaneously undergoes apoptotic cell death. Serum and glucose deprivation markedly decreased the viability of PC12 cells, which was characterized with apparent apoptotic features such as membrane blebbing as well as fragmentation of genomic DNA and nuclei. However, the aqueous extract of Hwansodan significantly reduced serum and glucose deprivation-induced cell death and apoptotic characteristics through reduction of intracellular peroxide generation. Pretreatment of Hwansodan also ingibited the activation of caspase-3, in turn, degradation of ICAD/DFF45 was completely abolished in serum and glucose deprivated cells. Furthermore, pretreatment of Hwansodan obviously increased heme oxygenase 1 (HO-1) expression in PC12 cells. Taken together, the data suggest that the protective effects of Hwansodan against serum and glucose deprivation induced oxidative injuries may be achieved through the scavenging of reactive oxygene species accompanying with HO-1 induction.

Conversion of Apricot Cyanogenic Glycosides to Thiocyanate by Liver and Colon Enzymes

  • Lee, Ji-Yeon;Kwon, Hoon-Jeong
    • Toxicological Research
    • /
    • 제25권1호
    • /
    • pp.23-28
    • /
    • 2009
  • Some of the edible plants like apricot kernel, flaxseed, and cassava generate hydrogen cyanide (HCN) when cyanogenic glycosides are hydrolyzed. Rhodanese (thiosulfate: cyanide sulfurtransferases of TSTs; EC: 2.8.1.1) is a sulfide-detoxifying enzymes that converts cyanides into thiocyanate and sulfite. This enzyme exists in a liver and kidneys in abundance. The present study is to evaluate the conversion of apricot cyanogenic glycosides into thiocyanate by human hepatic (HepG2) and colonal (HT-29) cells, and the induction of the enzymes in the rat. The effects of short term exposure of amygdalin to rats have also been investigated. Cytosolic, mitochondrial, and microsomal fractions from HepG2 and HT-29 cells and normal male Spraque-Dawley rats were used. When apricot kernel extract was used as substrate, the rhodanese activity in liver cells was higher than the activity in colon cells, both from established human cell line or animal tissue. The cytosolic fractions showed the highest rhodanese activity in all of the cells, exhibiting two to three times that of microsomal fractions. Moreover, the cell homogenates could metabolize apricot extract to thiocyanate suggesting cellular hydrolysis of cyanogenic glycoside to cyanide ion, followed by a sulfur transfer to thiocyanate. After the consumption of amygdalin for 14 days, growth of rats began to decrease relative to that of the control group though a significant change in thyroid has not been observed. The resulting data support the conversion to thiocyanate, which relate to the thyroid dysfunction caused by the chronic dietary intake of cyanide. Because Korean eats a lot of Brassicaceae vegetables such as Chinese cabbage and radish, the results of this study might indicate the involvement of rhodanese in prolonged exposure of cyanogenic glycosides.

Anti-Cancer Effect of IN-2001 in MDA-MB-231 Human Breast Cancer

  • Min, Kyung-Nan;Joung, Ki-Eun;Kim, Dae-Kee;Sheen, Yhun-Yhong
    • Biomolecules & Therapeutics
    • /
    • 제20권3호
    • /
    • pp.313-319
    • /
    • 2012
  • In recent years, inhibition of HDACs has emerged as a potential strategy to reverse aberrant epigenetic changes associated with cancer, and several classes of HDAC inhibitors have been found to have potent and specific anticancer activities in preclinical studies. But their precise mechanism of action has not been elucidated. In this study, a novel synthetic inhibitor of HDAC, 3-(4-dimethylamino phenyl)-N-hydroxy-2-propenamide [IN-2001] was examined for its antitumor activity and the underlying molecular mechanisms of any such activity on human breast cancer cell lines. IN-2001 effectively inhibited cellular HDAC activity ($IC_{50}$ = 0.585 nM) inMDA-MB-231 human breast cancer cells. IN-2001 caused a significant dose-dependent inhibition of cell proliferation in estrogen receptor (ER) negative MDA-MB-231human breast cancer cells. Cell cycle analysis revealed that the growth inhibitory effects of IN-2001 might be attributed to cell cycle arrest at $G_0/G_1$ and/or $G_2$/Mphase and subsequent apoptosis in human breast cancer cells. These events are accompanied by modulating several cell cycle and apoptosis regulatory genes such as CDK inhibitors $p21^{WAF1}$ and $p27^{KIP1}$ cyclin D1, and other tumor suppressor genes such as cyclin D2. Collectively, IN-2001 inhibited cell proliferation and induced apoptosis in human breast cancer cells and these findings may provide new therapeutic approaches, combination of antiestrogen together with a HDAC inhibitor, in the hormonal therapy-resistant ER-negative breast cancers. In summary, our data suggest that this histone deacetylase inhibitor, IN-2001, is a novel promising therapeutic agent with potent antitumor effects against human breast cancers.

A Novel Anti-Microbial Peptide from Pseudomonas, REDLK Induced Growth Inhibition of Leishmania tarentolae Promastigote in Vitro

  • Yu, Yanhui;Zhao, Panpan;Cao, Lili;Gong, Pengtao;Yuan, Shuxian;Yao, Xinhua;Guo, Yanbing;Dong, Hang;Jiang, Weina
    • Parasites, Hosts and Diseases
    • /
    • 제58권2호
    • /
    • pp.173-179
    • /
    • 2020
  • Leishmaniasis is a prevalent cause of death and animal morbidity in underdeveloped countries of endemic area. However, there is few vaccine and effective drugs. Antimicrobial peptides are involved in the innate immune response in many organisms and are being developed as novel drugs against parasitic infections. In the present study, we synthesized a 5-amino acid peptide REDLK, which mutated the C-terminus of Pseudomonas exotoxin, to identify its effect on the Leishmania tarentolae. Promastigotes were incubated with different concentration of REDLK peptide, and the viability of parasite was assessed using MTT and Trypan blue dye. Morphologic damage of Leishmania was analyzed by light and electron microscopy. Cellular apoptosis was observed using the annexin V-FITC/PI apoptosis detection kit, mitochondrial membrane potential assay kit and flow cytometry. Our results showed that Leishmania tarentolae was susceptible to REDLK in a dose-dependent manner, disrupt the surface membrane integrity and caused parasite apoptosis. In our study, we demonstrated the leishmanicidal activity of an antimicrobial peptide REDLK from Pseudomonas aeruginosa against Leishmania tarentolae in vitro and present a foundation for further research of anti-leishmanial drugs.

Hepatic Gene Expression Analysis of Gadolinium Chloride Treated Mice

  • Jeong, Sun-Young;Lim, Jung-Sun;Hwang, Ji-Yoon;Kim, Yong-Bum;Kim, Chul-Tae;Lee, Nam-Seob;Yoon, Seok-Joo
    • Molecular & Cellular Toxicology
    • /
    • 제2권1호
    • /
    • pp.21-28
    • /
    • 2006
  • Gadolinium chloride ($GdCl_{3}$) was known to block Kupffer cells and generally its toxicity study based on blocking these cells. Therefore, $GdCl_{3}$ frequently used to study toxic mechanisms of hepatotoxicants inducing injury through Kupffer cells. We also tried to investigate the effect of $GdCl_{3}\;on\;CCl_{4}$ toxicity, typical hepatotoxicants. Administration of $GdCl_{3}$ to mice significantly suppressed AST (asparatate amino transferase), ALT (alanine amino transferase) levels which were increased by $CCl_{4}$ treatment. However, $GdCl_{3}$ didn't inhibit the phagocytotic activity of Kupffer cells. Malondialdehyde (MDA) is a good indicator of the degree of lipid peroxidation. In this study, MDA increased by $GdCl_{3}$ administration not by $CCl_{4}$. To understand the toxicity of $GdCl_{3}$, we analyzed global gene expression profile of mice liver after acute $GdCl_{3}$ injection. Four hundred fifty two genes were differentially expressed with more than 2-fold in at least one time point among 3 hr, 6 hr, and 24 hr. Several genes involved in fibrogenesis regulation. Several types of pro-collagens (Col1a2, Col5a2, Col6a3, and Col13a1) and tissue inhibitor of metal-loproteinase1 (TIMP1) were up regulated during all the time points. Genes related to growth factors, chemokines, and oxidative stress, which were known to control fibrogenesis, were significantly changed. In addition, $GdCl_{3}$ induced abnormal regulation between lipid synthesis and degradation related genes. These data will provide the information about influence of $GdCl_{3}$ to hepatotoxicity.

Characterization of Homologous Defective Interfering RNA during Persistent Infection of Vero Cells with Japanese Encephalitis Virus

  • Yoon, Sung Wook;Lee, Sang-Yong;Won, Sung-Yong;Park, Sun-Hee;Park, Soo-Young;Jeong, Yong Seok
    • Molecules and Cells
    • /
    • 제21권1호
    • /
    • pp.112-120
    • /
    • 2006
  • It has been suggested that defective interfering (DI) RNA contributes to the persistence of Japanese encephalitis virus (JEV). In this study, we characterized molecular and biological aspects of the DI RNA and its relation to viral persistence. We identified a homologous DI virus intimately associated with JEV persistence in Vero cells. The production of DI RNA during undiluted serial passages of JEV coincided with the appearance of cells refractory to acute infection with JEV. We also established a Vero cell clone with a persistent JEV infection in which the DI RNA coreplicated efficiently at the expense of helper virus. The infectious virus yield of the clone fluctuated during its growth depending upon the amount of DI RNA accumulated in the previous replication cycle. Identification of the corresponding negative-sense RNA of the DI RNA indicated that the DI RNA functioned as a replication unit. Most of the DI RNA molecules retained their open reading frames despite a large deletion, encompassing most of the prM, the entire E, and the 5' half of the NS1 gene. Taken together, these observations suggest that the generation of homologous DI RNA during successive JEV acute infections in Vero cells probably participates actively in persistent JEV infection.