• Title/Summary/Keyword: cellular fatty acid composition

Search Result 65, Processing Time 0.021 seconds

Isolation and identification of β-glucosidase producing halophilic Roseivivax roseus (β-Glucosidase를 생성하는 호염성 Roseivivax roseus 균주의 분리 및 분류동정)

  • Cho, Geon-Yeong;Han, Song-Ih
    • Korean Journal of Microbiology
    • /
    • v.51 no.2
    • /
    • pp.141-147
    • /
    • 2015
  • Four halophilic bacteria were isolated from a salt water tank of more than 25% above salinity used for production of salt. HJS1 and HJS6 strains were identified as having ${\beta}$-glucosidase producing capabilities at high salinity. ${\beta}$-Glucosidase produced from these bacterial strains showed the best activity at 56-79 U/ml in NaCl (0-5%), showing the highest ${\beta}$-glucosidase activity at NaCl 3%. A salt tolerant ${\beta}$-glucosidase can maintain at least 75% activity of the enzyme in 0-20% NaCl concentration. The 16S rRNA gene sequences of strains HJS1 and HJS6 shows 99.8% similarity with Roseivivax roseus $BH87090^T$. Those sequences were registered as AB971835 and AB971836 in the NCBI GenBank. DNA-DNA hybridization test revealed that both strains showed 90.1 to 90.3% hybridization values with R. roseus $BH87090^T$, which was the closest phylogenetic neighbor. Major Cellular fatty acids of strains HJS1 and HJS6 were $C_{16:0}$, $C_{18:1}$ ${\omega}7c$, $C_{19:0}$ cyclo ${\omega}8c$ and 11-methyl $C_{18:1}$ and the major quinone was Q-10. Their fatty acid composition and quinone were very similar to Roseivivax roseus $BH87090^T$. Meanwhile, Roseivivax roseus $BH87090^T$ did not produce any ${\beta}$-glucosidase. Based on the molecular and chemotaxonomic properties, strains HJS1 and HJS6 were identified as members of Roseivivax roseus.

Effect of Blue Color-deficient Sunlight on the Productivity and Cold Tolerance of Crop Plants II. On the unsaturation of mitochondrial phospholipid (청색파장(靑色波長)영역이 결여된 태양광이 작물(作物)의 생산성(生産性) 및 내냉성(耐冷性)의 향상에 미치는 효과 II. 미토콘드리아막(膜)의 인지질불포화도(燐脂質不飽和度)의 증가)

  • Jung, Jin;Kim, Chang-Sook
    • Korean Journal of Environmental Agriculture
    • /
    • v.5 no.2
    • /
    • pp.149-155
    • /
    • 1986
  • The fatty acid compositions of phospholipids extracted from leaves and leaf mitochondria, which were sampled from several horicultural plants grown under blue color-deficient sunlight (BCDS), were determined and compared with those from plants grown under natural white colored sunlight(WCS). It was found that the mitochondria isolated from plants grown under BCDS contained phospholipid whose degree of unsaturation in unit of number of double bonds per lipid molecule was remarkably higher than that from plants grown under WCS, the relative increment being $8{\sim}49%$. This was significantly larger than the relative increment, $4{\sim}8%$ for total phospholipid extracted from whole leaves grown under BCDS campared to WCS. This observation demonstrated that the blue light effect of sunlight on the chemical property of cellular membranes, as long as it was concerned with fatty acid composition, arose mainly at the mitochondrial membrane. Also observing that the degree of unsaturation of mitochondrial phospholipid was much lower than that of total phospholipid, it was interpreted that this was the consequence of rather active oxidative destruction of lipid-fatty acid components occuring in mitochondrial membrane by the reactive oxygen species, especially superoxide($O_2-$), which was known to be produced in mitochondrial inner membrane through the side reactions of the respiratory electron transport chain and also probably through the photosensitized reaction involving oxygen induced by blue colored light. Thus, it may be tentatively concluded that the extent of photosensitization in mitochondrial membrane could be considerably reduced under BCDS resulting in lowering of the $O_2-$ level in the respirating organelle The possible involvement of photodynamic action in membrane oxidation was also indicated by the fact that the typical fat-soluble antioxidant, ${\alpha}-tocopherol$, was found to be contained on a higher level in leaves under BCDS than those under WCS.

  • PDF

Anticarcinogenic Responses of MCF-7 Breast Cancer Cells to Conjugated Linoleic Acid (CLA) (식이성 Conjugated Linoleic Acid (CLA)가 유선암 세포(MCF-7)에서의 항암효과에 미치는 영향)

  • 문희정;이순재;박수정;장유진;이명숙
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.32 no.3
    • /
    • pp.418-427
    • /
    • 2003
  • Conjugated linoleic acid (CLA) is the mixture of positional and geometric isomers of linoleic acid (LA, C18:2 $\omega$6), which is found abundantly in dairy products and meats. This study was peformed to investigate the anticarcinogenic effect of CLA in MCF-7 breast cancer cells. MCF-7 cell were treated with LA and CLA at the various concentrations of 15, 30, 60, 120 UM each. After incubation for 48 and 72 hours, cell proliferation, fatty acids incorporation into cell, peroxidation and activities of antioxidant enzymes were measured. Postaglandin E$_2$ (PGE$_2$) and thromboxane $A_2$ (TXA$_2$) were measured for the eicosanoids metabolism. There was no cell growth differences in both of LA and CLA treated MCF-7 cells at 48 hr incubation. Compared to LA, cell growth was decreased by CLA treatment according to increasing concentration at longer incubation times, respectively (p<0.05). Both of LA and CLA was incorporated into the cellular lipids 22~54% higher than in control but LA incorporation was not so linear as CLA according to concentration. Arachidonic acid (C20:4, $\omega$6) was synthesized after treatment of LA but did not in CLA, respectively. The lipid peroxide concentration in LA 120 $\mu$M group increased as 1.7 times as that in CLA 120 $\mu$M treated. The activities of antioxidant enzymes such as glutathione peroxidase and glutathione reductase were increased by the supplementation with CLA 120 $\mu$M at 72 hr incubation (p<0.001) compared to LA, otherwise activity of superoxide dismutase was not different in both. PGE$_2$ and TXA$_2$ levels were lower in condition of CLA treatments according to lower levels of arachidonic acids than those in LA treated group, respectively. Overall, the dietary CLA might change the MCF-7 cell growth by the changes of cell composition, production of lipid peroxide, activities of antioxidant enzymes and eicosanoid synthesis compared to dietary LA.

First Report of Bacterial Root Rot Caused by Serratia plymuthica on Panax ginseng (Serratia plymuthica에 의한 인삼 세균뿌리썩음병 발생)

  • Jung, Won Kwon;Kim, Young Soo;Choi, Jin Kook;Kim, Seung-Han;Jang, Myeong-Hwan;Kwon, Tae Lyong;Jeon, Yongho
    • Research in Plant Disease
    • /
    • v.24 no.4
    • /
    • pp.332-338
    • /
    • 2018
  • In August of 2011, a wilting disease of ginseng was observed at Bongwha, Gyeongbuk province, Korea. Affected plants initially show withering symptoms on leaves of ginseng. As the disease progresses, withering leaves spread downward, eventually encompassing the whole plant. Leaves lose vigor but remain pale green. Symptoms of roots were brown, and soft rots characterized by moist and watery decay of the whole ginseng root, which initiated as small brown, water-soaked lesions of hairy roots and enlarged to the entire roots. The causal organism isolated from the infected roots was identified as Serratia plymuthica based on its physiological and biochemical characteristics, by cellular fatty acid composition (GC-FAME), the utilization of carbon sources (BioLog System), and 16S rRNA sequence of the isolated bacterium were 99% homologous to those of Serratia plymuthica strains. Artificial inoculation of the bacterium produced the same brown or soft rot symptoms on the ginseng roots, from which the same bacterium was isolated. This is the first report of bacterial root rot caused by the Serratia plymuthica in ginseng in Korea. Serratia plymuthica has been used as antagonistic microorganism for biological control on several crop plants. But it was proved pathogen of ginseng at humid condition in this study.

Altitude training as a powerful corrective intervention in correctin insulin resistance

  • Chen, Shu-Man;Kuo, Chia-Hua
    • Korean Journal of Exercise Nutrition
    • /
    • v.16 no.2
    • /
    • pp.65-71
    • /
    • 2012
  • Oxygen is the final acceptor of electron transport from fat and carbohydrate oxidation, which is the rate-limiting factor for cellular ATP production. Under altitude hypoxia condition, energy reliance on anaerobic glycolysis increases to compensate for the shortfall caused by reduced fatty acid oxidation [1]. Therefore, training at altitude is expected to strongly influence the human metabolic system, and has the potential to be designed as a non-pharmacological or recreational intervention regimen for correcting diabetes or related metabolic problems. However, most people cannot accommodate high altitude exposure above 4500 M due to acute mountain sickness (AMS) and insulin resistance corresponding to a increased levels of the stress hormones cortisol and catecholamine [2]. Thus, less stringent conditions were evaluated to determine whether glucose tolerance and insulin sensitivity could be improved by moderate altitude exposure (below 4000 M). In 2003, we and another group in Austria reported that short-term moderate altitude exposure plus endurance-related physical activity significantly improves glucose tolerance (not fasting glucose) in humans [3,4], which is associated with the improvement in the whole-body insulin sensitivity [5]. With daily hiking at an altitude of approximately 4000 M, glucose tolerance can still be improved but fasting glucose was slightly elevated. Individuals vary widely in their response to altitude challenge. In particular, the improvement in glucose tolerance and insulin sensitivity by prolonged altitude hiking activity is not apparent in those individuals with low baseline DHEA-S concentration [6]. In addition, hematopoietic adaptation against altitude hypoxia can also be impaired in individuals with low DHEA-S. In short-lived mammals like rodents, the DHEA-S level is barely detectable since their adrenal cortex does not appear to produce this steroid [7]. In this model, exercise training recovery under prolonged hypoxia exposure (14-15% oxygen, 8 h per day for 6 weeks) can still improve insulin sensitivity, secondary to an effective suppression of adiposity [8]. Genetically obese rats exhibit hyperinsulinemia (sign of insulin resistance) with up-regulated baseline levels of AMP-activated protein kinase and AS160 phosphorylation in skeletal muscle compared to lean rats. After prolonged hypoxia training, this abnormality can be reversed concomitant with an approximately 50% increase in GLUT4 protein expression. Additionally, prolonged moderate hypoxia training results in decreased diffusion distance of muscle fiber (reduced cross-sectional area) without affecting muscle weight. In humans, moderate hypoxia increases postprandial blood distribution towards skeletal muscle during a training recovery. This physiological response plays a role in the redistribution of fuel storage among important energy storage sites and may explain its potent effect on changing body composition. Conclusion: Prolonged moderate altitude hypoxia (rangingfrom 1700 to 2400 M), but not acute high attitude hypoxia (above 4000 M), can effectively improve insulin sensitivity and glucose tolerance for humans and antagonizes the obese phenotype in animals with a genetic defect. In humans, the magnitude of the improvementvaries widely and correlates with baseline plasma DHEA-S levels. Compared to training at sea-level, training at altitude effectively decreases fat mass in parallel with increased muscle mass. This change may be associated with increased perfusion of insulin and fuel towards skeletal muscle that favors muscle competing postprandial fuel in circulation against adipose tissues.