• Title/Summary/Keyword: cellular and molecular toxicology

Search Result 342, Processing Time 0.031 seconds

Genotoxicity and Identification of Differentially Expressed Genes of Formaldehyde in human Jurkat Cells

  • Kim, Youn-Jung;Kim, Mi-Soon;Ryu, Jae-Chun
    • Molecular & Cellular Toxicology
    • /
    • v.1 no.4
    • /
    • pp.230-236
    • /
    • 2005
  • Formaldehyde is a common environmental contaminant found in tobacco smoke, paint, garments, diesel and exhaust, and medical and industrial products. Formaldehyde has been considered to be potentially carcinogenic, making it a subject of major environmental concern. However, only a little information on the mechanism of immunological sensitization and asthma by this compound has been known. So, we performed with Jurkat cell line, a human T lymphocyte, to assess the induction of DNA damage and to identify the DEGs related to immune response or toxicity by formaldehyde. In this study, we investigated the induction of DNA single strand breaks by formaldehyde using single cell gel electrophoresis assay (comet assay). And we compared gene expression between control and formaldehyde treatment to identify genes that are specifically or predominantly expressed by employing annealing control primer (ACP)-based $GeneFishing^{TM}$ method. The cytotoxicity ($IC_{30}$) of formaldehyde was determined above the 0.65 mM in Jurkat cell in 48 h treatment. Based on the $IC_{30}$ value from cytotoxicity test, we performed the comet assay in this concentration. From these results, 0.65 mM of formaldehyde was not revealed significant DNA damages in the absence of S-9 metabolic activation system. And the one differentially expressed gene (DEG) of formaldehyde was identified to zinc finger protein 292 using $GeneFishing^{TM}$ method. Through further investigation, we will identify more meaningful and useful DEGs on formaldehyde, and then can get the information on the associated mechanism and pathway with immune response or other toxicity by formaldehyde exposure.

Toxicogenomic Analysis and Identification of Estrogen Responsive Genes of Di (n-ethylhexyl) Phthalate in MCF-7 Cells

  • Kim, Youn-Jung;Yun, Hye-Jung;Ryu, Jae-Chun
    • Molecular & Cellular Toxicology
    • /
    • v.1 no.3
    • /
    • pp.149-156
    • /
    • 2005
  • Di (n-ethylhexyl) phthalate (DEHP) is thought to mimic estrogens in their action, and are called endocrine disrupting chemicals. DEHP is used in numerous consumer products, especially those made of flexible polyvinyl chloride and have been reported to be weakly estrogenic. In this study, DEHP were tested for estrogenic properties in vitro models and with microarray analysis. First, the E-screen assay was used to measure the proliferation of DEHP in MCF-7 cells, a human breast cancer cell line. DEHP induced an increase in MCF-7 cell proliferation at concentration of $10^{-4}M$. Second, we carried out a microarray analysis of MCF-7 cells treated with DEHP using human c-DNA microarray including 401 endocrine system related genes. Of the genes analyzed, 60 genes were identified showing significant changes in gene expression resulting from DEHP. Especially, 4 genes were repressed and 4 genes were induced by DEHP compared to $17{\beta}-estradiol$. Among these genes, trefoil factor 3 (intestinal), breast cancer 1, early onset and CYP1B1 are involved in estrogen metabolism and regulation. Therefore it suggests that these genes may be associated with estrogenic effect of the DEHP on transcriptional level. The rationale is that, as gene expression is a sensitive endpoint, alterations of these genes may act as useful biomarkers to define more precisely the nature and level of exposure to kinds of phthalates.

The Alcohol-inducible form of Cytochrome P450 (CYP 2E1): Role In Toxicology and Regulation of Expression

  • Novak, Raymond F.;Woodcroft, Kimberley J.
    • Archives of Pharmacal Research
    • /
    • v.23 no.4
    • /
    • pp.267-282
    • /
    • 2000
  • Cytochrome P45O (CYP) 2E1 catalyzes the metabolism of a wide variety of therapeutic agents, procarcinogens, and low molecular weight solvents. CYP2E1-catalyzed metabolism may cause toxicity or DNA damage through the production of toxic metabolites, oxygen radicals, and lipid peroxidation. CYP2E1 also plays a role in the metabolism of endogenous compounds including fatty acids and ketone bodies. The regulation of CYP2E1 expression is complex, and involves transcriptional, post-transcriptional, translational, and post-translational mechanisms. CYP2E1 is transcriptionally activated in the first few hours after birth. Xenobiotic inducers elevate CYP2E1 protein levels through both increased translational efficiency and stabilization of the protein from degradation, which appears to occur primarily through ubiquitination and proteasomal degradation. CYP2E1 mRNA and protein levels are altered in response to pathophysiologic conditions by hormones including insulin, glucagon, growth hormone, and leptin, and growth factors including epidermal growth factor and hepatocyte growth factor, providing evidence that CYP2E1 expression is under tight homeostatic control.

  • PDF

Construction and Validation of Human cDNA Microarray for Estimation of Endocrine Disrupting Chemicals (KISTCHIP-400 ver. 1.0)

  • Ryu, Jae-Chun;Kim, Youn-Jung
    • Molecular & Cellular Toxicology
    • /
    • v.1 no.1
    • /
    • pp.52-61
    • /
    • 2005
  • Transcript profiling is a particularly valuable tool in the field of steroid receptor biology, as these receptors are ligand-activated transcription factors and therefore exert their initial effects through altering gene expression in responsive cells. Also, an awareness of endocrine disrupting chemicals (EDCs) and their potential screening methods to identify endocrine activity have been increased. Here we developed an in-house cDNA microarray, named KISTCHIP-400 ver. 1.0, with 416 clones, based on public database and research papers. These clones contained estrogen, androgen, thyroid hormone & receptors, sex hormone signal transduction & regulation, c-fos, c-myc, ps2 gene, metabolism related genes etc. Also, to validate the KISTCHIP-400 ver. 1.0, we investigated gene expression profiles with reference hormones, $10^{8}\;M\;17{\beta}-estradiol,\;10^{-7}\;M\;testosterone\;and\;10^{-7}\;M$ progesterone in MCF-7 cell line. As the results, gene expression profiles of three reference hormones were distinguished from each other with significant and identified 33 $17{\beta}-estradiol$ responsive genes. This study is in first step of validation for KISTCHIP-400 ver. 1.0, as following step transcriptional profile analysis on not only low concentrations of EDCs but suspected EDCs using KISTCHIP-400 ver. 1.0 is processing. Our results indicate that the developed microarray may be a useful laboratory tool for screening EDCs and elucidating endocrine disrupting mechanism.

Evaluation of Estrogenic Effects of Phthalate Analogues Using in vitro and in vivo Screening Assays

  • Kim, Youn-Jung;Ryu, Jae-Chun
    • Molecular & Cellular Toxicology
    • /
    • v.2 no.2
    • /
    • pp.106-113
    • /
    • 2006
  • Phthalate analogues are a plasticizer and solvent used in industry. Phthalates were classified in the category of "suspected" endocrine disruptors. The purpose of our study was to screen and elucidate the endocrine disrupting activity of seven phthalate analogues. E-screen assay was performed in MCF-7 human breast cancer cells with seven phthalate analogues. In this cell proliferation assay, benzyl butyl phthalate (BBP) and dibutyl phthalate (DBP) showed high estrogenic activity. Their relative proliferation efficiencies (RPE) were 109 and 106%, respectively. In vitro estrogen receptor (ER) binding assay, BBP, di-n-octyl phthalate (DOP) and dinonyl phthalate (DNP) showed weak relative binding affinity (RBA: 0.02%) compared to $17{\beta}-estradiol\;(E2)$ (RBA: 100%). In uterotrophic assay, E2 produced a significant increase, whereas four tested phthalate analogues had potential estrogenic effects in vitro did not increased in uterus weight in immature rats. From these results, we demonstrated that phthalate analogues exhibit weak estrogenic activity in vitro assays at high concentrations. Although phthalates induced an increase in MCF-7 cell proliferation by an estrogenic effect, they could not induce a uterus weight increase in vivo. From these, we may suggest that these phthalate analogues are easily metabolized to inactive forms in vivo. Further investigation in other in vitro and in vivo experimental systems might be required.