• Title/Summary/Keyword: cellular and molecular toxicology

Search Result 342, Processing Time 0.025 seconds

Identification of Differentially Expressed Genes (DEGs) by Malachite Green in HepG2 Cells

  • Kim, Youn-Jung;Song, Mee;Ryu, Jae-Chun
    • Molecular & Cellular Toxicology
    • /
    • v.4 no.1
    • /
    • pp.22-30
    • /
    • 2008
  • Malachite Green (MG), a toxic chemical used as a dye, topical antiseptic and antifungal agent for fish, is highly soluble in water, cytotoxic to various mammalian cells and also acts as a liver tumor promoter. In view of its industrial importance and possible exposure to human beings, MG possesses a potential environmental health hazard. So, we performed with HepG2, a human hepatocellular carcinoma cell line, to identify the differentially expressed genes (DEGs) related to toxicity of MG. And we compared gene expression between control and MG treatment to identify genes that are specifically or predominantly expressed by employing annealing control primer (ACP)-based $GeneFishing^{TM}$ method. The cytotoxicity $(IC_{20})$ of MG was determined above the $0.867{\mu}M$ in HepG2 cell for 48 h treatment. And the DEGs of MG were identified that 5 out of 6 DEGs were upregulated and 1 out of 6 DEGs was down-regulated by MG. Also, MG induced late apoptosis and necrosis in a dose dependent in flow cytometric analysis. Through further investigation, we will identify more meaningful and useful DEGs on MG, and then can get the information on mechanism and pathway associated with toxicity of MG.

Forward Gene Mutation Assay of Seven Benzophenone-type UV Filters using L5178Y Mouse Lymphoma Cell

  • Jeon, Hee-Kyung;Sarma, Sailendra Nath;Kim, Youn-Jung;Ryu, Jae-Chun
    • Molecular & Cellular Toxicology
    • /
    • v.3 no.1
    • /
    • pp.23-30
    • /
    • 2007
  • The effects of high energy short wave solar radiation on human skin have received much publicity as the major cause of accelerated skin ageing and of skin cancers. To meet public demand, the cosmetic industry has developed sun protection factor products, which contain a variety of so-called "UV filters", among others benzophenone (BP) and its metabolites are the widely used UV filters. UV filters are also used to prevent UV light from damaging scents and colors in a variety of cosmetics products and to protect of plastic products against light-induced degradation. There are many variants of BP in use. In this respect, to regulate and to evaluate the hazardous effect of BP-type UV filters will be important to environment and human health. The genotoxicity of 7 BP-type UV filters was evaluated in L5178Y $(tk^{+/-})$ mouse lymphoma cells in vitro. BP, benzhydrol, 4-hydroxybenzophenone 2-hydroxy-4-methoxybenzophenone and 2, 4-dihydroxybenzophenone did not induce significant mutation frequencies both in the presence and absence of metabolic activation system. 2, 2'-Dihydroxy-4-methoxybenzophenone appeared the positive results at the highest dose, i.e. 120.4 ${\mu}g/mL$ only in the absence of metabolic activation system. And also, 2, 3, 4-trihydroxybenzophenone revealed a significant increase of mutation frequencies in the range of 138.1-207.2 ${\mu}g/mL$ in the absence of metabolic activation system and 118.3-354.8 ${\mu}g/mL$ in the presence of metabolic activation system. Through the results of MLA with 7 BP-type UV filters in L5178Y cells in vitro, we may provide the important clues on the genotoxic potentials of these BP-type UV filters.

Genotoxicity Study on Khal, a Halocidin Derivative, in Bacterial and Mammalian Cells

  • Kim, Youn-Jung;Kim, Mi-Soon;Jeon, Hee-Kyoung;Ryu, Jae-Chun
    • Molecular & Cellular Toxicology
    • /
    • v.2 no.3
    • /
    • pp.151-158
    • /
    • 2006
  • Khal was a synthetic congener of halocidin, a heterodimeric peptide consisting of 19 and 15 amino acid residues detected in Halocynthia aurantium. This compound was considered a candidate for the development of a novel peptide antibiotic. The genotoxicity of Khal was subjected to high throughput toxicity screening (HTTS) because they revealed strong antibacterial effects. Mouse lymphoma thymidine kinase ($tk^{+/-}$) gene assay (MOLY), single cell gel electrophoresis (Comet) assay and chromosomal aberration assay in mammalian cells and Ames reverse mutation assay in bacterial system were used as simplified, inexpensive, short-term in vitro screening tests in our laboratory. These compounds are not mutagenic in S. typhimurium TA98 and TA100 strains both in the presence and absence of metabolic activation. Before performing the comet assay, $IC_{20}$ of Khal was determined the concentration of $25.51\;{\mu}/mL\;and\;21.99\;{\mu}g/mL$ with and without S-9, respectively. In the comet assay, Khal was not induced DNA damage in mouse lymphoma cell line. Also, the mutation frequencies in the Khal-treated cultures were similar to the vehicle controls. It is suggests that Khal is non-mutagenic in MOLY assay. And no clastogenicity was observed in Khal-treated Chinese hamster lung cells. The results of this battery of assays indicate that Khal has no genotoxic potential in bacterial or mammalian cell systems. Therefore, we suggest that Khal, as the optimal candidates with both no genotoxic potential and antibacterial effects must be chosen.

Identification of Genes Associated with Early and Late Response of Methylmercury in Human Neuroblastoma Cell Line

  • Kim, Youn-Jung;Kim, Mi-Soon;Jeon, Hee-Kyung;Ryu, Jae-Chun
    • Molecular & Cellular Toxicology
    • /
    • v.4 no.2
    • /
    • pp.164-169
    • /
    • 2008
  • Methylmercury (MeHg) is known to have devastating effects on the mammalian nervous system. In order to characterize the mechanism of MeHg-induced neurotoxicity, we investigated the analysis of transcriptional profiles on human 8k cDNA microarray by treatment of $1.4{\mu}M$ MeHg at 3, 12, 24 and 48h in human neuroblastoma SH-SY5Y cell line. Some of the identified genes by MeHg treatment were significant at early time points (3h), while that of others was at late time points (48h). The early response genes that may represent those involved directly in the MeHg response included pantothenate kinase 3, a kinase (PRKA) anchor protein (yotiao) 9, neurotrophic tyrosine kinase, receptor, type 2 gene, associated with NMDA receptor activity regulation or perturbations of central nervous system homeostasis. Also, when SH-SY5Y cells were subjected to a longer exposure (48h), a relative increase was noted in a gene, glutamine-fructose-6-phosphate transaminase 1, reported that overexpression of this gene may lead to the increased resistance to MeHg. To confirm the alteration of these genes in cultured neurons, we then applied real time-RT PCR with SYBR green. Thus, this result suggests that a neurotoxic effect of the MeHg might be ascribed that MeHg alters neuronal receptor regulation or homeostasis of neuronal cells in the early phase. However, in the late phase, it protects cells from neurotoxic effects of MeHg.

15-DEOXY-$\Delta^{12,14}$ PROSTAGLANDIN $\textrm{J}_2$ RESCUES PC12 CELLS FROM HYDROGEN PEROXIDE-INDUCED APOPTOSIS THROUGH POTENTIATION OF CELLULAR ANTIOXIDATIVE DEFENSE CAPACITY

  • Kim, Ji-Woo;Jang, Jung-Hee;Surh, Young-Joon
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2003.05a
    • /
    • pp.91-92
    • /
    • 2003
  • Oxidative stress induced by reactive oxygen intermediates (ROIs) has been implicated in a variety of human diseases including cancer, diabetes, rheumatoid arthritis and neurodegenerative disorders. Hydrogen peroxide ($H_2O$$_2$), a representative ROI which is produced during the cellular redox process, can cause cell death via apoptosis and/or necrosis depending on its concentrations. (omitted)

  • PDF

Evaluation of the Genetic Toxicity of Synthetic Chemical (XVII) -In vitro Mouse Lymphoma Assay and In vitro Supravital Micronucleus Assay with 1, 2-Dichlorobenzene

  • Kim, Youn-Jung;Ryu, Jae-Chun
    • Molecular & Cellular Toxicology
    • /
    • v.3 no.2
    • /
    • pp.113-118
    • /
    • 2007
  • Chlorobenzenes due to their acute toxicity and the capability of bioaccumulating are of great health and environmental concern. Especially, 1, 2-dichlorobenzene (CAS No. 95-50-1) is used for organic synthesis, dye manufacture, as a solvent and for other applications in chemical industry. Adverse effects of 1, 2-dichlorobenzene includes increases in liver and kidney weights and hepatotoxicity. In this study, we evaluated the genetic toxicity of 1, 2-dichlorobenzene with more advanced methods, in vitro mouse lymphoma assay $tk^{+/-}$ gene assay (MLA) and in vitro mouse supravital micronucleus (MN) assay. 1, 2-Dichlorobenzene appeared the significantly positive results and the induction of large mutant colonies only in the presence of metabolic activation system with MLA. But in vitro testing of 1, 2-dichlorobenzene yielded negative results with supravital MN assay. These results suggest that 1, 2-dichlorobenzene may play a mutagen rather than clastogen in vitro mammalian system.

Evaluation of the Genetic Toxicity of Synthetic Chemical (XVIII)-in vitro Mouse Lymphoma Assay and in vivo Supravital Micronucleus Assay with Butylated Hydroxytoluene (BHT)

  • Kim, Youn-Jung;Ryu, Jae-Chun
    • Molecular & Cellular Toxicology
    • /
    • v.3 no.3
    • /
    • pp.172-176
    • /
    • 2007
  • Butylated hydroxytoluene (BHT) is widely used antioxidant food additives. It has been extensively studied for potential toxicities. BHT appears adverse effects in liver and thyroid. In this study, we evaluated the genetic toxicity of BHT with more advanced methods, in vitro mouse lymphoma assay $tk^{+/-}$ gene assay (MLA) and in vivo mouse supravital micronucleus (MN) assay. BHT did not appear the significantly results in the absence and presence of metabolic activation system with MLA. Also, in vivo testing of BHT yielded negative results with supravital MN assay. These results suggest that BHT itself was not generally considered genotoxic.

Evaluation of the Genetic Toxicity of Synthetic Chemicals (XV) -In vivo Peripheral Blood Reticulocytes Micronucleus Assay of 17 Synthetic Chemicals in Mice- (합성화학물질들의 유전독성평가(XV) -마우스의 말초혈의 망상적혈구를 이용한 17종 합성화학물질들의 생체내 소핵시험-)

  • Kim Mi-Soon;Kim Youn-Jung;Ryu Jae-Chun
    • Environmental Analysis Health and Toxicology
    • /
    • v.21 no.3 s.54
    • /
    • pp.209-218
    • /
    • 2006
  • 합성화학물질들이 환경으로의 유입은 인체에는 물론 환경생태계에 많은 영향을 미치므로 이들의 유해성 검증은 매우 중요한 일이라 할 수 있다. 실제 산업체에서 사용되는 수많은 화학물질들의 유전적 손상 유발유무는 유해성검증에서 무엇보다 중요한 일이라 할 수 있다. 이에 산업체 공정과정에서 널리 사용되는 것으로 알려진 17종의 합성화학물질에 대해 마우스의 말초 혈의 망상적혈구를 이용한 in vivo 소핵시험을 수행하여, 소핵형성 유발유무를 관찰하였다. 양성대조군으로 사용된 mitomycin C는 음성대조군과 비교시 유의하게 소핵을 유발하는 반면, 비교적 마우스에서 높은 50% 치사량을 보이는 benzoyl chloride, p-toluene sulfonic acid 및 4,4'-sulfonyldianiline 등의 합성물질들을 포함한 총 17종의 물질들은 본 실험결과 통계적으로 유의하게 소핵을 유발하지 않는 것을 관찰 할 수 있었다.

Genotoxicity on $21{\alpha}-and\;{\beta}-methylmelianodiol$, a Component of Poncirus trifoliata, in Bacterial and Mammalian Cells

  • Ryu, Jae-Chun;Kim, Youn-Jung;Kim, Mi-Soon;Kim, Min-Ji;Sarma, Sailendra Nath;Lee, Seung-Ho
    • Molecular & Cellular Toxicology
    • /
    • v.1 no.3
    • /
    • pp.172-178
    • /
    • 2005
  • [ $21{\alpha}$ ]- and ${\beta}$-Methylmelianodiol were isolated as the inhibitor of IL-5 bioactivity from Poncirus tripoliata. To develope as an anti-septic drug, the genotoxicity of $21{\alpha}\;-and\;{\beta}-methylmelianodiol$ was subjected to high throughput toxicity screening (HTTS) because they revealed strong IL-5 inhibitory activity and limitation of quantity. Mouse lymphoma thymidine kinase ($tk^{+/-}$) gene assay (MOLY), single cell gel electrophoresis (Comet) assay in mammalian cells and Ames reverse mutation assay in bacterial system were used as simplified, inexpensive, short-term in vitro screening tests in our laboratory. These compounds are not mutagenic in S. typhimurium TA98 and TA100 strains both in the presence and absence of metabolic activation. Before performing the comet assay, $IC_{20}$ of $21{\alpha}-methylmelianodiol$ was determined the concentration of $25.51\;{\mu}g/mL\;and\;21.99\;{\mu}g/mL$ with and without S-9, respectively. Also $21{\beta}-methylmelianodiol$ was determined the concentration of $24.15\;{\mu}g/mL\;and\;\;22.46\;{\mu}g/mL$ with and without S-9, respectively. In the comet assay, DNA damage was not observed both $21{\alpha}-methylmelianodiol\;and\;21{\beta}-methylmelianodiol$ in mouse lymphoma cell line. Also, the mutant frequencies in the treated cultures were similar to the vehicle controls, and none of $21{\alpha}\;-and\;{\beta}-methylmelianodiol$ with and without S-9 doses induced a mutant frequency over. twice the background. It is suggests that $21{\alpha}\;-and\;{\beta}-methylmelianodiol$ are non-mutagenic in MOLY assay. The results of this battery of assays indicate that $21{\alpha}\;-and\;{\beta}-methylmelianodiol$ have no genotoxic potential in bacterial or mammalian cell systems. Therefore, we suggest that $21{\alpha}\;-and\;{\beta}-methylmelianodiol$, as the optimal candidates with both no genotoxic potential and IL-5 inhibitory effects must be chosen.