• Title/Summary/Keyword: cellular ATP

Search Result 188, Processing Time 0.035 seconds

3-(Naphthalen-2-yl(propoxy)methyl)azetidine hydrochloride attenuates MPP+-induced cytotoxicity by regulating oxidative stress and mitochondrial dysfunction in SH-SY5Y cells

  • Yang, Seung-Ju;Yang, Ji Woong;Na, Jung-Min;Ha, Ji Sun;Choi, Soo Young;Cho, Sung-Woo
    • BMB Reports
    • /
    • v.51 no.11
    • /
    • pp.590-595
    • /
    • 2018
  • Parkinson's disease (PD) is a common chronic neurodegenerative disease mainly caused by the death of dopaminergic neurons. However, no complete pharmacotherapeutic approaches are currently available for PD therapies. 1-methyl-4-phenylpyridinium $(MPP^+)$-induced SH-SY5Y neurotoxicity has been broadly utilized to create cellular models and study the mechanisms and critical aspects of PD. In the present study, we examined the role of a novel azetidine derivative, 3-(naphthalen-2-yl(propoxy)methyl)azetidine hydrochloride (KHG26792), against $MPP^+$-induced neurotoxicity in SH-SY5Y cells. Treatment of KHG26792 significantly attenuated $MPP^+$-induced changes in the protein levels of Bcl-2 and Bax together with efficient suppression of $MPP^+$-induced activation of caspase-3 activity. KHG26792 also attenuated mitochondrial potential and levels of ROS, $Ca^{2+}$, and ATP in $MPP^+$-treated SH-SY5Y cells. Additionally, KHG26792 inhibited the induced production of nitric oxide and malondialdehyde. Moreover, the protective effect of KHG26792 is mediated through regulation of glutathione peroxidase and GDNF levels. Our results suggest a possibility that KHG26792 treatment significantly protects against $MPP^+$-induced neurotoxicity in SH-SY5Y cells and KHG26792 may be a valuable therapeutic agent for the treatment of PD induced by an environmental toxin.

Preferential Killing of Human Lung Cancer Cell Lines with Mitochondrial Dysfunction by Non-Thermal Dbd Plasma

  • Panngom, Kamonporn;Baik, Ku Youn;Nam, Min-Kyung;Rhim, Hyang-Shuk;Choi, Eun Ha
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.199-199
    • /
    • 2013
  • The distinctive cellular and mitochondrial dysfunctions of a human epithelial lung cancer cell line (H460) from a human lung fibroblastic normal cell line (MRC5) have been studied by dielectric barrier discharge (DBD) plasma treatment. The DBD plasma device have generated large amount of H2O2 and NOx in culture media which is dependent on plasma exposure time. It is found that the cell number of lung cancer cell H460 has been reduced more than the lung normal cell MRC5 as being increased exposure and incubation time. Also these both cell lines have showed mitochondria fragmentation under 5 minutes' plasma exposure, which is a clue of apoptosis. It is noted in this study that AnnexinV staining has showed not only early apoptosis, but also late apoptosis in lung cancer cell H460. Mitochondria enzyme activity and ATP generation have been also much reduced in lung cancer cell H460. Their mitochondrial membrane potential (${\Delta}{\psi}m$) has been found to be reduced in magnitude and shifted to the induced-potential level of cccp, while MRC5 mitochondrial membrane potential has been shifted slightly to that. These distinctively selective responses of lung cancer cell H460 from lung normal cell MRC5 gives us possibility of applying plasma to cancer therapy.

  • PDF

Proteomic Analysis of Fructophilic Properties of Osmotolerant Candida magnoliae

  • Yu, Ji-Hee;Lee, Dae-Hee;Park, Yong-Cheol;Lee, Mi-Gi;Kim, Dae-Ok;Ryu, Yeon-Woo;Seo, Jin-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.2
    • /
    • pp.248-254
    • /
    • 2008
  • Candida magnoliae, an osmotolerant and erythritol producing yeast, prefers D-fructose to D-glucose as carbon sources. For the investigation of the fructophilic characteristics with respect to sugar transportation, a sequential extraction method using various detergents and ultracentrifugation was developed to isolate cellular membrane proteins in C. magnoliae. Immunoblot analysis with the Pma1 antibody and two-dimensional electrophoresis analysis coupled with MS showed that the fraction II was enriched with membrane proteins. Eighteen proteins out of 36 spots were identified as membrane or membrane-associated proteins involved in sugar uptake, stress response, carbon metabolism, and so on. Among them, three proteins were significantly upregulated under the fructose supplying conditions. The hexose transporter was highly homologous to Ght6p in Schizosaccharomyces pombe, which was known as a predominant transporter for the fructose uptake of S. pombe because it exhibited higher affinity to D-fructose than D-glucose. The physicochemical properties of the ATP-binding cassette transporter and inorganic transporter explained their direct or indirect associations with the fructophilic behavior of C. magnoliae. The identification and characterization of membrane proteins involved in sugar uptake might contribute to the elucidation of the selective utilization of fructose to glucose by C. magnoliae at a molecular level.

SM709, Ingredient of Antimelanogenic Bamboo Extract, Blocks Endothelin-1-induced $[Ca^{2+}]_i$ Increase in Human Melanocytes

  • Kim, Shin-Hee;Lee, Ki-Mu;Kim, Hyo-Shin;Lee, Gyu-Seung;Jeon, Byeong-Hwa;Kim, Kwang-Jin;Park, Jin-Bong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.7 no.6
    • /
    • pp.311-316
    • /
    • 2003
  • Endothelins secreted from keratinocytes are intrinsic mitogens and melanogens of human melanocytes in UVB-induced hyperpigmentation. To elucidate the cellular mechanism of antimelanogenic activity of bamboo extract, the effects of three ingredients of bamboo extract on endothelin 1 (ET-1)-induced $Ca^{2+}$ mobilization were investigated in cultured human melanocytes. ET-1 receptors in human melanocytes were characterized by using specific antagonist, and ET-1 was found to increase intracellular $Ca^{2+}$ concentration ($[Ca^{2+}]_i$) by activating ET-B receptor. SM709 (1,2-O-diferulyl-glycerol), an ingredient of bamboo extract, inhibited ET-1-induced $[Ca^{2+}]_i$ increase in a concentration- and time-dependent manner, although another ingredients SM707 and SM708 had no effect on ET-1-induced $[Ca^{2+}]_i$ increase in human melanocytes. SM709 ($100{\mu}M$), however, did not affect $[Ca^{2+}]_i$ increase induced by thapsigargin and caffeine, suggesting that SM709 has no effect on the $Ca^{2+}$ store in melanocytes. Furthermore, SM709 did not affect $[Ca^{2+}]_i$ increase induced by LPA or ATP, known as G protein-mediated PLC activators like ET-1. Taken together, it is suggested that SM709 antagonizes ET-1-induced transmembrane signaling through ET-B receptor, which maybe a possible underlying mechanism of antimelanogenic activity of bamboo extract in human melanocytes.

Tyrosine Kinase Inhibitor as Clinical Application Feasibility in Canine Intractable Tumor Diseases

  • Choi, Eul-Soo;Song, Joong-Hyun;Shin, Jong-Il;Sur, Jung-Hyang;Kang, Byeong-Teck;An, Su-Jin;Cho, Kyu-Woan;Jung, Dong-In
    • Journal of Veterinary Clinics
    • /
    • v.33 no.4
    • /
    • pp.187-193
    • /
    • 2016
  • A tyrosine kinase is an enzyme that can transfer a phosphate group from ATP to a protein in a cell. It functions as an "on" or "off" switch in many cellular functions. This study aims to show that the actions of growth factors associated with PDGFR-${\alpha}$, PDGFR-${\beta}$, VEGFR-2, c-KIT, and c-ABL, which are used in veterinary medicine, are expressed in canine intractable tumors. This study used archival cases of canine paraganglioma, gastrointestinal adenocarcinoma, hepatocellular carcinoma, and renal cell carcinoma. Tissues had been immunohistochemical analysis. The antibodies used were PDGFR-${\alpha}$, PDGFR-${\beta}$, c-kit, VEGFR-2, and c-Abl. PDGFR-${\alpha}$ was expressed only in HCC, and PDGFR-${\beta}$ was expressed in all tumors. VEGFR was also only expressed in HCC, and c-KIT has been expressed in HCC, paraganglioma, and small intestinal adenocarcinoma. c-Abl was expressed in all cancers, but was weakly expressed in paraganglioma, while more than moderately expressed in other tissues. In conclusion, this study investigated how TKIs used in human medicine can be applied to canine intractable tumors, through immunohistochemistry. The results indicate that there may be an application for TKIs in treating canine intractable tumors.

Effects of Selaginella Tamariscina on Apoptosis via the Activation of Caspase-3 in HL-60 (권백의 Caspase-3 활성화를 통한 HL-60 세포에서 세포사멸 유도효과)

  • Nam Hang Woo;Lee Sung Won;An Byung Sang;Chough Won Joon;Kim Yeong Mok;Mun Yean Ja;Ahn Seong Hun;Woo Won Hong
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.17 no.3
    • /
    • pp.751-758
    • /
    • 2003
  • In our previous studies, we reported that Selaginella Tamariscina(ST) induced apoptotic cell death in HL-60 cells selectively. The cell viability after treatment with extract of ST was quantified by MTT assay and trypan bleu exclusion method. The results showed that application with ST in HL-60 induced 40% cell death at the concentration of 400 ㎍/ml. The cancericidic effect of Selaginella Tamariscina was mediated by apoptosis. Thus, HL-60 cells exposed to Selaginella Tamariscina displayed the DNA fragmentation ladder and nucleus chromatin condensation characteristic for apoptosis. The enzyme activity of caspase-3 and actived caspase-3 protein were markedly increased in HL-60 cells treated with the extract of Selaginella Tamariscina. In addition, the extract of Selaginella Tamariscina induced cleavage of PARP, a known substrate for caspase-3. The expression of Bcl-2, anti-apoptotic protein, was decreased by treatment of the aqueous extract of Selaginella Tamariscina in a dose-dependent manner. And the expression of pro-apoptotic Bax protein was increased. In conclusion, our results suggest that the extract of Selaginella Tamariscina may induce the apoptotic death of HL-60 cells via activation of caspase-3, cleavage of PARP protein, depletion of cellular ATP levels and Bcl-2 degradation.

Obatoclax Regulates the Proliferation and Fusion of Osteoclast Precursors through the Inhibition of ERK Activation by RANKL

  • Oh, Ju Hee;Lee, Jae Yoon;Park, Jin Hyeong;No, Jeong Hyeon;Lee, Na Kyung
    • Molecules and Cells
    • /
    • v.38 no.3
    • /
    • pp.279-284
    • /
    • 2015
  • Obatoclax, a pan-Bcl2 inhibitor, shows antitumor activities in various solid malignancies. Bcl2-deficient mice have shown the importance of Bcl2 in osteoclasts, as the bone mass of the mice was increased by the induced apoptosis of osteoclasts. Despite the importance of Bcl2, the effects of obatoclax on the proliferation and differentiation of osteoclast precursors have not been studied extensively. Here, we describe the anti-proliferative effects of obatoclax on osteoclast precursors and its negative role on fusion of the cells. Stimulation with low doses of obatoclax significantly suppressed the proliferation of osteoclast precursors in a dose-dependent manner while the apoptosis was markedly increased. Its stimulation was sufficient to block the activation of ERK MAP kinase by RANKL. The same was true when PD98059, an ERK inhibitor, was administered to osteoclast precursors. The activation of JNK1/2 and p38 MAP kinase, necessary for osteoclast differentiation, by RANKL was not affected by obatoclax. Interestingly, whereas the number of TRAP-positive mononuclear cells was increased by both obatoclax and PD98059, fused, multinucleated cells larger than $100{\pm}m$ in diameter containing more than 20 nuclei were completely reduced. Consistently, obatoclax failed to regulate the expression of osteoclast marker genes, including c-Fos, TRAP, RANK and CtsK. Instead, the expression of DC-STAMP and Atp6v0d2, genes that regulate osteoclast fusion, by RANKL was significantly abrogated by both obatoclax and PD98059. Taken together, these results suggest that obatoclax down-regulates the proliferation and fusion of osteoclast precursors through the inhibition of the ERK1/2 MAP kinase pathway.

Glyceraldehyde-3-Phosphate, a Glycolytic Intermediate, Plays a Key Role in Controlling Cell Fate Via Inhibition of Caspase Activity

  • Jang, Mi;Kang, Hyo Jin;Lee, Sun Young;Chung, Sang J.;Kang, Sunghyun;Chi, Seung Wook;Cho, Sayeon;Lee, Sang Chul;Lee, Chong-Kil;Park, Byoung Chul;Bae, Kwang-Hee;Park, Sung Goo
    • Molecules and Cells
    • /
    • v.28 no.6
    • /
    • pp.559-563
    • /
    • 2009
  • Glyceraldehyde-3-phosphate is a key intermediate in several central metabolic pathways of all organisms. Aldolase and glyceraldehyde-3-phosphate dehydrogenase are involved in the production or elimination of glyceraldehyde-3-phosphate during glycolysis or gluconeogenesis, and are differentially expressed under various physiological conditions, including cancer, hypoxia, and apoptosis. In this study, we examine the effects of glyceraldehyde-3-phosphate on cell survival and apoptosis. Overexpression of aldolase protected cells against apoptosis, and addition of glyceraldehyde-3-phosphate to cells delayed apoptosis. Additionally, delayed apoptotic phenomena were observed when glyceraldehyde-3-phosphate was added to a cell-free system, in which artificial apoptotic process was induced by adding dATP and cytochrome c. Surprisingly, glyceraldehyde-3-phosphate directly suppressed caspase-3 activity in a reversible noncompetitive mode, preventing caspase-dependent proteolysis. Based on these results, we suggest that glyceraldehyde-3-phosphate, a key molecule in several central metabolic pathways, functions as a molecule switch between cell survival and apoptosis.

NICKEL INCORPORATION INTO Klebsiella aerogenes UREASE (Klebsiella aerogenes Urease로의 닉켈의 도입)

  • Lee, Mann-Hyung-
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1994.11a
    • /
    • pp.69-80
    • /
    • 1994
  • Although ureases play important roles in microbial nitrogen metabolism and in the pathogenesis of several human diseases, little is known of the mechanism of metallocenter biosynthesis in this Ni-Containing enzyme. Klebsiella aerogenes urease apo-protein was purified from cells grown in the absence of Ni. The purified apo-enzyme showed the same native molecular weight, charge, and subunit stoichiometry as the holo-enzyme. Chemical modification studies were consistent with histidinyl ligation of Ni. Apo-enzyme could not be activated by simple addition of Ni ions suggesting a requirement for a cellular factor. Deletion analysis showed that four accessory genes (ureD, ureE, ureF, and ureG) are necessary for the functional incorporation of the urease metallocenter. Whereas the $\Delta$ureD, $\Delta$ureF, and $\Delta$ureG mutants are inactive and their ureases lack Ni, the $\Delta$ureE mutants retain partial activity and their ureases possess corresponding lower levels of Ni. UreE and UreG peptides were identified by SDS-polyacrylamide gel comparisons of mutant and wild type cells and by N-terminal sequencing. UreD and UreF peptides, which are synthesized at ve교 low levels, were identified by using in vitro transcription/translation methods. Cotransformation of E. coli cells with the complementing plasmids confirmed that ureD and ureF gene products act in trans. UreE was purified and characterized. immunogold electron microscopic studies were used to localize UreE to the cytoplasm. Equilibrium dialysis studies of purified UreE with $^{63}$ NiC1$_2$ showed that it binds ~6 Ni in a specific manner with a $K_{d}$ of 9.6 $\pm$1.3 $\mu$M. Results from spectroscopic studies demonstrated that Ni ions are ligated by 5 histidinyl residues and a sixth N or O atom, consistent with participation of the polyhistidine tail at the carboxyl termini of the dimeric UreE in Ni binding. With these results and other known features of the urease-related gene products, a model for urease metallocenter biosynthesis is proposed in which UreE binds Ni and acts as a Ni donor to the urease apo-protein while UreG binds ATP and couples its Hydrolysis to the Ni incorporation process.ouples its Hydrolysis to the Ni incorporation process.s.

  • PDF

Telomere-Mitochondrion Links Contribute to Induction of Senescence in MCF-7 Cells after Carbon-Ion Irradiation

  • Miao, Guo-Ying;Zhou, Xin;Zhang, Xin;Xie, Yi;Sun, Chao;Liu, Yang;Gan, Lu;Zhang, Hong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.4
    • /
    • pp.1993-1998
    • /
    • 2016
  • The effects of carbon-ion irradiation on cancer cell telomere function have not been comprehensively studied. In our previous report cancer cells with telomere dysfunction were more sensitive to carbon-ion irradiation, but the underlying mechanisms remained unclear. Here we found that telomerase activity was suppressed by carbon-ion irradiation via hTERT down-regulation. Inhibition of telomere activity by MST-312 further increased cancer cell radiosensitivity to carbon-ion radiation. hTERT suppression caused by either carbon-ion irradiation or MST-312 impaired mitochondrial function, as indicated by decreased membrane potential, mtDNA copy number, mitochondrial mass, total ATP levels and elevated reactive oxygen species (ROS). PGC-$1{\alpha}$ expression was repressed after carbion-ion irradiation, and hTERT inhibition by MST-312 could further exacerbate this effect. Lowering the mitochondrial ROS level by MitoTEMPO could partially counteract the induction of cellular senescence induced by carbon-ion radiation and MST-312 incubation. Taken together, the current data suggest that telomere-mitochondrion links play a role in the induction of senescence in MCF-7 cells after carbon-ion irradiation.