• Title/Summary/Keyword: cell-free protein synthesis,

Search Result 78, Processing Time 0.022 seconds

Zeolite-Mediated Cation Exchange Enhances the Stability of mRNA during Cell-Free Protein Synthesis

  • Kim, You-Eil;Kim, Dong-Myung;Choi, Cha-Yong
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.11 no.3
    • /
    • pp.258-261
    • /
    • 2006
  • The addition of zeolite particles enhances the stability of mRNA molecules in a cell-free protein synthesis system. When $20{\mu}g/{\mu}L$ of zeolite (Y5.4) is added to a reaction mixture of cell-free protein synthesis, a substantial increase in protein synthesis is observed. The stabilizing effect of zeolite is most dearly observed in an in vitro translation reaction directed by purified mRNA, as opposed to a coupled transcription and translation reaction. Upon the addition of zeolite in the in vitro translation reaction, the life span of the mRNA molecules is substantially extended, leading to an 80% increase in protein synthesis. The effect of zeolite upon the mRNA stability appears be strongly related to the cation exchange (potassium to sodium) reaction. Our results demonstrate the possibility of modifying this biological process using heterogeneous, non-biological substances in a cell-free protein synthesis system.

Enhancement of Glucose-Fueled Cell-Free Protein Synthesis by the Addition of Lipids (지질의 첨가를 통한 포도당 기반 무세포 단백질 합성 시스템의 단백질 발현 효율 향상)

  • Lee, So Jeong;Kim, Ho-Cheol;Kim, Dong-Myung
    • Korean Chemical Engineering Research
    • /
    • v.57 no.1
    • /
    • pp.85-89
    • /
    • 2019
  • Cell-free protein synthesis utilizes the translational machinery in a cell extract. Unlike the conventional cell-based expression methods, not being affected by the conditions for cell growth, cell-free protein synthesis enables flexible manipulation of individual factors affecting the efficiency protein biosynthesis. However, the high cost and low stability of the energy sources to regenerate ATP have limited the use of cell-free synthesis for large-scale production of recombinant proteins. One of the approaches to address this problem is to use glucose as an alternative energy source to regenerate ATP through the glucose-metabolizing pathways in a cell extract. In this study, in an attempt to improve the efficiency of ATP regeneration by reinforcing oxidative phosphorylation process, we supplemented with cellular lipids to a glucose-fueled reaction mixture for cell-free protein synthesis. As a result of the lipid supplementation, the productivity of chloramphenicol acetyltransferase in a cell-free synthesis system using glucose increased more than 6 fold compared to when the lipid was not supplemented.

Continuous Cell-Free Protein Synthesis Using Glycolytic Intermediates as Energy Sources

  • Kim, Ho-Cheol;Kim, Tae-Wan;Park, Chang-Gil;Oh, In-Seok;Park, Kyung-Moon;Kim, Dong-Myung
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.5
    • /
    • pp.885-888
    • /
    • 2008
  • In this work, we demonstrate that glycolytic intermediates can serve as efficient energy sources to regenerate ATP during continuous-exchange cell-free (CECF) protein synthesis reactions. Through the use of an optimal energy source, approximately 10 mg/ml of protein was generated from a CECF protein synthesis reaction at greatly reduced reagent costs. Compared with the conventional reactions utilizing phosphoenol pyruvate as an energy source, the described method yields 10-fold higher productivity per unit reagent cost, making the techniques of CECF protein synthesis a more realistic alternative for rapid protein production.

Development of a Rapid and Productive Cell-free Protein Synthesis System

  • Kim, Dong-Myung;Choi, Cha-Yong;Ahn, Jin-Ho;Kim, Tae-Wan;Kim, Nam-Young;Oh, In-Suk;Park, Chang-Gil
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.11 no.3
    • /
    • pp.235-239
    • /
    • 2006
  • Due to recent advances in genome sequencing, there has been a dramatic increase in the quantity of genetic information, which has lead to an even greater demand for a faster, more parallel expression system. Therefore, interest in cell-free protein synthesis, as an alternative method for high-throughput gene expression, has been revived. In contrast to in vivo gene expression methods, cell-free protein synthesis provides a completely open system for direct access to the reaction conditions. We have developed an efficient cell-free protein synthesis system by optimizing the energy source and S30 extract. Under the optimized conditions, approximately $650{\mu}g/mL$ of protein was produced after 2h of incubation, with the developed system further modified for the efficient expression of PCR-amplified DNA. When the concentrations of DNA, magnesium, and amino acids were optimized for the production of PCR-based cell-free protein synthesis, the protein yield was comparable to that from the plasmid template.

Rapid Preparation of Truncated Transaminases using a PCR-based Cell-free Protein Synthesis System (PCR 기반의 무세포 단백질 발현 시스템을 이용한 절단 트랜스아미나제의 고속생산)

  • Kwon, Yong-Chan;Park, Kyung-Moon;Kim, Dong-Myung
    • KSBB Journal
    • /
    • v.21 no.4
    • /
    • pp.302-305
    • /
    • 2006
  • In this work, we attempted the application of cell-free protein synthesis technology for the rapid generation of truncated enzymes. Truncated DNAs of a transaminase were PCR-amplified and directly expressed in cell-free protein synthesis reactions. Variants of the transaminase were rapidly prepared and analyzed for their enzymatic activity. Described method that combines the PCR and cell-free protein synthesis technologies will offer a versatile platform for the rapid generation of optimally modified protein species.

Optimization of Programmed Suppression in a Cell-Free Protein Synthesis System with Unnatural Amino Acid S-(2-Nitrobenzyl)cysteine

  • HYUN JOO;KANG, TAEK JIN;HUI KYOUNG SONG;JIN HO AHN;CHA YONG CHOI
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.3
    • /
    • pp.344-347
    • /
    • 2003
  • Unnatural amino acid S-(2-nitrobenzyl)cysteine was incorporated into human erythropoietin by using a programmed suppression of nonsense codon in a cell-free protein synthesis system. Several controlling factors affecting the operational efficiency of the suppression were investigated and optimized. The amount of suppressor tRNA and the concentration of $Mg^2+$ were crucial not only for the efficiency but also for the control of the exact suppression. In addition, some general optimization factor are reported in order to improve the efficiency in an unnatural amino acid mutagenesis.

Enhanced Synthesis of Active rPA in the Continuous Exchange Cell-free Protein Synthesis [CECF] System utilizing Molecular Chaperones (분자 샤페론을 사용한 연속확산식 무세포단백질 발현 시스템에서의 재조합 Plasminogen Activator의 효율적 발현)

  • Park, Chang-Gil;Kim, Tae-Wan;Choi, Cha-Yong;Kim, Dong-Myung
    • KSBB Journal
    • /
    • v.21 no.2
    • /
    • pp.118-122
    • /
    • 2006
  • In this report, we describe that the use of GroEL/GroES-enriched S30 extract remarkably enhances the solubility and enzymatic activity of cell-free synthesized rPA, which requires the correct formation of 9 disulfide bonds for its biological activity. We found that the stable maintenance of redox potential is necessary, but not sufficient for the optimal expression of active rPA. In a control reaction without using additional molecular chaperones, most of the rPA molecules were aggregated almost instantly after their expression and thus failed to exhibit the enzymatic activity. However, by the use of GroEL/GroES-enriched extract, combined with IAM-treatment, approximately $30{\mu}g/ml$ of active rPA was expressed in the cell-free synthesis reaction. This result not only demonstrates the efficient production of complex proteins, but also shows the control and flexibility offered by the cell-free protein synthesis system.

Assay of Epoxide Hydrolase Activity Based on PCR-linked in vitro Coupled Transcription and Translation System. (무세포 단백질합성 시스템 기반의 epoxide hydrolase 발현 및 활성 분석)

  • Lee, Ok-Kyung;Kim, Hee-Sook;Lee, Eun-Yeol
    • Journal of Life Science
    • /
    • v.15 no.5 s.72
    • /
    • pp.779-782
    • /
    • 2005
  • Cell-free expression is a powerful tool for rapid protein analysis, enabling an efficient identification of gene without cumbersome procedure of transformation and cell culture. Epoxide hydrolase (EH) gene of Rhodotorula glutinis was simply amplified by PCR, and the resultant gene was expressed in vitro using a coupled Transcription/translation system. The cell-free expressed EH protein mixture exhibited the enantioselective hydrolysis activity toward (R)-styrene oxide, representing that cell-free protein synthesis system can be used for the rapid expression of an enantioselective enzyme for an efficient identification of the chiral activity.

Preparation Method for Escherichia coliS30 Extracts Completely Dependent upon tRNA Addition to Catalyze Cell-free Protein Synthesis

  • Ahn, Jin-Ho;Hwang, Mi-Yeon;Oh, In-Seok;Park, Kyung-Moon;Hahn, Geun-Hee;Choi, Cha-Yong;Kim, Dong-Myung
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.11 no.5
    • /
    • pp.420-424
    • /
    • 2006
  • A simple method for depleting E. coliS30 extracts of endogenous tRNA has been developed. An $ethanolamine-Sepharose^{(R)}$ column equilibrated with water selectively captured the tRNA molecules in E. coli S30 extracts. As a result, S30 extracts filtered through this column became completely dependent upon the addition of exogenous tRNA to mediate cell-free protein synthesis reactions. We anticipate that the procedures developed and described will be particularly useful for in vitro suppression reaction studies designed to introduce unnatural amino acids into protein molecules.

Development of a Recombinant Protein Vaccine Based on Cell-Free Protein Synthesis for Sevenband Grouper Epinephelus septemfasciatus Against Viral Nervous Necrosis

  • Kim, Jong-Oh;Kim, Jae-Ok;Kim, Wi-Sik;Oh, Myung-Joo
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.10
    • /
    • pp.1761-1767
    • /
    • 2015
  • Sevenband grouper, Epinephelus septemfasciatus, is becoming an important aquaculture species in Korea. However, viral nervous necrosis disease is a large problem causing mass mortality in sevenband grouper aquaculture. Recombinant protein vaccines are one of the best methods to reduce these economic losses. However, the cell-based expression method mainly produces inclusion bodies and requires additional procedures. In this study, we expressed a recombinant viral coat protein of sevenband grouper nervous necrosis virus (NNV) using a cell-free protein synthesis system. The purified recombinant NNV coat protein (rNNV-CP) was injected into sevenband grouper at different doses followed by a NNV challenge. Nonimmunized fish in the first trial (20 μg/fish) began to die 5 days post-challenge and reached 70% cumulative mortality. In contrast, immunized fish also starting dying 5 days postchallenge but lower cumulative mortality (10%) was observed. Cumulative morality in the second trial with different doses (20, 4, and 0.8 μg/fish) was 10%, 40%, and 50%, respectively. These results suggest that rNNV-CP can effectively immunize sevenband grouper depending on the dose administered. This study provides a new approach to develop a recombinant vaccine against NNV infection for sevenband grouper.