• Title/Summary/Keyword: cell-free DNA

Search Result 271, Processing Time 0.028 seconds

Formation of DNA-protein Cross-links Mediated by C1'-oxidized Abasic Lesion in Mouse Embryonic Fibroblast Cell-free Extracts

  • Sung, Jung-Suk;Park, In-Kook
    • Animal cells and systems
    • /
    • v.9 no.2
    • /
    • pp.79-85
    • /
    • 2005
  • Oxidized abasic residues arise as a major class of DNA damage by a variety of agents involving free radical attack and oxidation of deoxyribose sugar components. 2-deoxyribonolactone (dL) is a C1'-oxidized abasic lesion implicated in DNA strand scission, mutagenesis, and covalent DNA-protein cross-link (DPC). We show here that mammalian cell-free extract give rise to stable DPC formation that is specifically mediated by dL residue. When a duplex DNA containing dL at the site-specific position was incubated with cell-free extracts of Po ${\beta}-proficient$ and -deficient mouse embryonic fibroblast cells, the formation of major dL-mediated DPC was dependent on the presence of DNA polymerase (Pol) ${\beta}$. Formation of dL-specific DPC was also observed with histones and FEN1 nuclease, although the reactivity in forming dL-mediated DPC was significantly higher with Pol ${\beta}$ than with histones or FEN1. DNA repair assay with a defined DPC revealed that the dL lesion once cross-linked with Pol ${\beta}$ was resistant to nucleotide excision repair activity of cell-free extract. Analysis of nucleotide excision repair utilizing a model DNA substrate containing a (6-4) photoproduct suggested that excision process for DPC was inhibited because of DNA single-strand incision at 5' of the lesion. Consequently DPC mediated by dL lesion may not be readily repaired by DNA excision repair pathway but instead function as unusual DNA damage causing a prolonged DNA strand break and trapping of the major base excision repair enzyme.

High Resolution Melting Analysis for Epidermal Growth Factor Receptor Mutations in Formalin-fixed Paraffin-embedded Tissue and Plasma Free DNA from Non-small Cell Lung Cancer Patients

  • Jing, Chang-Wen;Wang, Zhuo;Cao, Hai-Xia;Ma, Rong;Wu, Jian-Zhong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.11
    • /
    • pp.6619-6623
    • /
    • 2013
  • Background:The aim of the research was to explore a cost effective, fast, easy to perform, and sensitive method for epidermal growth factor receptor (EGFR) mutation testing. Methods: High resolution melting analysis (HRM) was introduced to evaluate the efficacy of the analysis for dectecting EGFR mutations in exons 18 to 21 using formalin-fixed paraffin-embedded (FFPE) tissues and plasma free DNA from 120 patients. Results: The total EGFR mutation rate was 37.5% (45/120) detected by direct sequencing. There were 48 mutations in 120 FFPE tissues assessed by HRM. For plasma free DNA, the EGFR mutation rate was 25.8% (31/120). The sensitivity of HRM assays in FFPE samples was 100% by HRM. There was a low false-positive mutation rate but a high false-negative rate in plasma free DNA detected by HRM. Conclusions: Our results show that HRM analysis has the advantage of small tumor sample need. HRM applied with plasma free DNA showed a high false-negative rate but a low false-positive rate. Further research into appropriate methods and analysis needs to be performed before HRM for plasma free DNA could be accepted as an option in diagnostic or screening settings.

Free Radical Involvement in the DNA Damaging Activity of Fumonisin Bl

  • Lee, Wan-Hee;Lee, Kil-Soo
    • Toxicological Research
    • /
    • v.17 no.4
    • /
    • pp.249-253
    • /
    • 2001
  • Fumonisin B1, a mycotoxin, is thought to induce esophageal cancer in humans and apoptosis in animal cells by inhibiting ceramide synthase. Dumonisin Bl may also generate reactive oxygen species directly or indirectly, leading to DNA damage and lipid peroxidation. In this study, a DNA fragmentation assay, dichlorofluorescein (DCF) analysis, and single cell gel electrophoresis (SCGE) were used to investigate the involvement of cellular free radicals, specifically hydrogen peroxide, in the DNA damaging activity of fumonisin B1. From an in vitro DNA fragmentation assay, E. coli DNA, damage by fumonisin Bl was increased by the addition of superxide dismutase (SOD) and decreased by catalase. SCGE and DCF analysis in vivo showed that the nuclear DNA damage and intracellular free radicals in cultured rat hepatocytes treated with fumonisin B1 were increased with the concentration of fumonisin Bl . DNA damage and free radical generation were inhibited by the addition of catalase. Fumonisin Bl , in the presence of SOD, produces hydrogen peroxide causing oxidative DNA damage and protein malfunction, leading to genotoxicity and cytotoxicity of the toxin.

  • PDF

Selection of iPSCs without mtDNA deletion for autologous cell therapy in a patient with Pearson syndrome

  • Yeonmi Lee;Jongsuk Han;Sae-Byeok Hwang;Soon-Suk Kang;Hyeoung-Bin Son;Chaeyeon Jin;Jae Eun Kim;Beom Hee Lee;Eunju Kang
    • BMB Reports
    • /
    • v.56 no.8
    • /
    • pp.463-468
    • /
    • 2023
  • Screening for genetic defects in the cells should be examined for clinical application. The Pearson syndrome (PS) patient harbored nuclear mutations in the POLG and SSBP1 genes, which could induce systemic large-scale mitochondrial genome (mtDNA) deletion. We investigated iPSCs with mtDNA deletions in PS patient and whether deletion levels could be maintained during differentiation. The iPSC clones derived from skin fibroblasts (9% deletion) and blood mononuclear cells (24% deletion) were measured for mtDNA deletion levels. Of the 13 skin-derived iPSC clones, only 3 were found to be free of mtDNA deletions, whereas all blood-derived iPSC clones were found to be free of deletions. The iPSC clones with (27%) and without mtDNA deletion (0%) were selected and performed in vitro and in vivo differentiation, such as embryonic body (EB) and teratoma formation. After differentiation, the level of deletion was retained or increased in EBs (24%) or teratoma (45%) from deletion iPSC clone, while, the absence of deletions showed in all EBs and teratomas from deletion-free iPSC clones. These results demonstrated that non-deletion in iPSCs was maintained during in vitro and in vivo differentiation, even in the presence of nuclear mutations, suggesting that deletion-free iPSC clones could be candidates for autologous cell therapy in patients.

Optimazation of the Assement and Apotosis of Endocrine-Bisphenol A Disruptors (내분비계장애물질 평가방법의 최적화 및 Apoptosis에 관한 연구)

  • Ahn Kwang-Hyun;Lee Kyung-A;Kim Bong-Hee
    • Environmental Analysis Health and Toxicology
    • /
    • v.19 no.3
    • /
    • pp.251-259
    • /
    • 2004
  • Xenoestrogens are chemicals with diverse structure that mimic estrogen. Bisphenol A, a monomer of polycarbonate and epoxy resins, has been detected in canned food and human saliva. Bisphenol A stimulate cell proliferation and induce expression of estrogen -response genes in vitro. The purpose of the this study was to evaluate cell proliferation of bisphenol A in the presence of a rat liver 59 mix contaning cytochrome P450 enzymes and Cu (II). The fragmentation of intact DNA, a parameter of apoptotic cell death, was evaluated quantitatively by diphenylamine reaction method. Bisphenol A induced apoptotic cell death in a dose-dependent manner The effect of radical scavenger on the apoptotic cell death induced bisphenol A was investigated. The DNA fragmentation induced by bisphenol A was significantly inhibited by addition of radical scavenger to the culture medium. This indicated that elevated oxidative stress caused by imbalance between the production and removal of free radicals occurred in cells. Taken together, these results suggest that free radical reacts with Cu (II) leading oxidative stress.

Plasma Circulating Cell-free Nuclear and Mitochondrial DNA as Potential Biomarkers in the Peripheral Blood of Breast Cancer Patients

  • Mahmoud, Enas H;Fawzy, Amal;Ahmad, Omar K;Ali, Amr M
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.18
    • /
    • pp.8299-8305
    • /
    • 2016
  • Background: In Egypt, breast cancer is estimated to be the most common cancer among females. It is also a leading cause of cancer-related mortality. Use of circulating cell-free DNA (ccf-DNA) as non-invasive biomarkers is a promising tool for diagnosis and follow-up of breast cancer (BC) patients. Objective: To assess the role of circulating cell free DNA (nuclear and mitochondrial) in diagnosing BC. Materials and Methods: Multiplex real time PCR was used to detect the level of ccf nuclear and mitochondrial DNA in the peripheral blood of 50 breast cancer patients together with 30 patients with benign lesions and 20 healthy controls. Laboratory investigations, histopathological staging and receptor studies were carried out for the cancer group. Receiver operating characteristic curves were used to evaluate the performance of ccf-nDNA and mtDNA. Results: The levels of both nDNA and mtDNA in the cancer group were significantly higher in comparison to the benign and the healthy control group. There was a statistically significant association between nDNA and mtDNA levels and well established prognostic parameters; namely, histological grade, tumour stage, lymph node status andhormonal receptor status. Conclusions: Our data suggests that nuclear and mitochondrial ccf-DNA may be used as non-invasive biomarkers in BC.

Antioxidative Activity of the Extract from the Inner Shell of Chestnut

  • SON Kyung Hun;YANG He Eun;LEE Seung Chul;CHUNG Ji Hun;JO Byoung Kee;KIM Hyun Pyo;HEO Moon Young
    • Biomolecules & Therapeutics
    • /
    • v.13 no.3
    • /
    • pp.150-155
    • /
    • 2005
  • The ethanolic extract of chestnut (Castanea crenata S. et Z., Fagaceae) inner shell (CISE) and one of its components, ellagic acid (EA), were evaluated for their protective effects against 1, 1-diphenyl-2-picryl hydrazine (DPPH) free radical generation and hydrogen peroxide-induced oxidative DNA damage in a mammalian cell line. CISE and EA were shown to possess the free radical scavenging effect against DPPH radical generation, significantly. They were also found to strongly inhibit hydrogen peroxide-induced DNA damage from Chinese hamster lung (CHL) cell, assessed by single cell gel electrophoresis assay and 8-hydroxy -2'-deoxy guanosine (8-OH-2'dG) assay. Furthermore, topical application of CISE [$12.5\%$(w/w) cream] and ellagic acid [$1.0\%$(w/w) cream] for 14 days potently inhibited malondialdehyde (MDA) formation of mouse dorsal skin (a marker of lipid peroxidation) induced by ultraviolet B exposure. Therefore, CISE and its component, ellagic acid, may be the useful natural antioxidants by scavenging free radicals, inhibition of lipid peroxidation and protecting oxidative DNA damage when topically applied.

The Protective Effects of Ganoderma lucidum on the DNA Damage and Mutagenesis (DNA손상 및 돌연변이에 대한 명지버섯의 방어효능)

  • 이길수;공석경;최수영
    • Biomolecules & Therapeutics
    • /
    • v.11 no.2
    • /
    • pp.139-144
    • /
    • 2003
  • Ganoderma lucidum is commonly known as medically potent mushroom, which has been widely used in China and other oriental countries for the treatment of various diseases, including cancer. In this report, we investigated the anti-oxidant and protective effect of Ganodema lucidum extract (GLE) against the DNA damage induced by free radical and U.V. In the assay of cell growth inhibition, the inhibitory cell growth rate induced by hydroxyl radical was dose-dependently decreased by GLE. This results support that GLE has a detoxifying activity against cytotoxicity of hydroxyl radical in E. coli cell. GLE also protected ColE1 plasmid DNA damage in the concentration of 200$\mu\textrm{g}$ per reaction on the DNA fragmentation assay. The nuclear tailing by hydrogen peroxide in single cell gel electrophoresis(SCGE) was decreased by GLE in the concentration of 50$\mu\textrm{g}$/ml. These data indicate that Ganoderma lucidum has an anti-oxidative activity to hydrogen peroxide. The mutation rate after irradiation of U.V. was reduced by 50$\mu\textrm{g}$/ml GLE and total number of Rif (Rifampicin) resistant mutants was decreased in a concentration dependent manner when added the GLE exogenously in a culture media. According to the results, it is likely that GLE has not only an anti-oxidative activity to hydroxyl radical but also an anti-mutagenic activity to U.V. mutagenesis.

Effects of Hwangryunhaedok-tang on DNA Damage, Antioxidant Enzymes Expression and Acetylcholinesterase Activity (황연해독탕(黃連解毒湯)의 산화적 DNA 손상에 대한 보호효과 및 항산화효소계의 발현과 Acetylcholinesterase 활성에 미치는 영향)

  • Moon, Jin-Young
    • The Korea Journal of Herbology
    • /
    • v.22 no.1
    • /
    • pp.7-12
    • /
    • 2007
  • Objectives : In Alzheimer's disease(AD), free radical oxidative stress caused by amyloid beta-peptide may lead to DNA damage, neuronal dysfunction, neurotoxicity and cell death, Hwangryunhaedok-tang(HHT) is traditionally used for the treatment of pyrogenetic diseases. To develop a new anti-AD drug from natural herb, HHT was selected and extracted in this study. Methods : The antioxidant activities of HHT water extract powder were examined by hydroxyl radical-induced DNA strand nicking assay, and antioxidative enzymes expression assay in H4IIE cell. In addition, HHT was examined for the inhibitory effect on the acetylcholinesterase(AChE) using by Ellman's coupled assay. Results: The HHT exhibit DNA protective effect in the hydroxyl radical-induced DNA Strand nicking assay, mRNA expression of superoxide dismutase and glutathione peroxidase were recovered at a normal level by HHT treatment in H4IIE cell. Furthermore, water extract of HHT showed inhibitory effect on AChE activity. Conclusion : These results suggest that HHT may be effective in delaying and preventing AD progression related to the free radical-induced DNA damage and AChE activity.

  • PDF

The Protective Effects of EGCG Extracted from Green Tea on Apoptosis Induced by$H_2O_2$ in Conjunctival Cell Lines ($H_2O_2$에 의한 결막 세포주의 세포고사에서 녹차추출물 EGCG의 보호효과)

  • Park, Su-Kyoung;Chae, Soo-Chul;Kho, Eun-Gyeong;Ryu, Geun-Chang;Kim, Jai-Min;Na, Myung-Suk;Lee, Jong-Bin
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.13 no.3
    • /
    • pp.95-101
    • /
    • 2008
  • Purpose: Hydrogen peroxide which is one of the reactive oxygen species has been seen to cause various diseases, various cellular disinfections, gene transformation and cell death. The goals of this study were to determine the protective effect of EGCG against $H_2O_2$-induced apoptotic death in conjunctival cell lines. Methods: We measured cell viability by MTT assay and analyzed DNA fragmentation to check up a distinctive feature in cell death and measured the removal ability of free radicals by DPPH free radical scavenging assay and evaluated the oxygen free radical's quantity in the cell by DCFH-DA assay. The mRNA expression in the cell were examined by RT-PCR. Results: Cell viability and free radical scavening activites was significantly increased in dose dependently after cell was exposed to EGCG. And DNA fragmentation and intracellular ROS was decreased. It was showed the mRNA expression which increase of bcl-2, bcl-xL expression and decrease of bax expression. Conclusions: From these results, it suggests that EGCG has an antioxidant effect and protects conjunctival cell lines from the $H_2O_2$-mediated apoptosis through the modulation of the mRNA expression.

  • PDF