• Title/Summary/Keyword: cell-cultivated meat

Search Result 4, Processing Time 0.018 seconds

Current technology and industrialization status of cell-cultivated meat

  • Seung Yun Lee;Da Young Lee;Seung Hyeon Yun;Juhyun Lee;Ermie Jr Mariano;Jinmo Park;Yeongwoo Choi;Dahee Han;Jin Soo Kim;Sun Jin Hur
    • Journal of Animal Science and Technology
    • /
    • v.66 no.1
    • /
    • pp.1-30
    • /
    • 2024
  • Interest and investment in cultivated meat are increasing because of the realization that it can effectively supply sufficient food resources and reduce the use of livestock. Nevertheless, accurate information on the specific technologies used for cultivated meat production and the characteristics of cultivated meat is lacking. Authorization for the use of cultivated meat is already underway in the United States, Singapore, and Israel, and other major countries are also expected to approve cultivated meat as food once the details of the intricate process of producing cultivated meat, which encompasses stages such as cell proliferation, differentiation, maturation, and assembly, is thoroughly established. The development and standardization of mass production processes and safety evaluations must precede the industrialization and use of cultivated meat as food. However, the technology for the industrialization of cultivated meat is still in its nascent stage, and the mass production process has not yet been established. The mass production process of cultivated meat may not be easy to disclose because it is related to the interests of several companies or research teams. However, the overall research flow shows that equipment development for mass production and cell acquisition, proliferation, and differentiation, as well as for three-dimensional production supports and bioreactors have not yet been completed. Therefore, additional research on the mass production process and safety of cultivated meat is essential. The consumer's trust in the cultivated meat products and production technologies recently disclosed by some companies should also be analyzed and considered for guiding future developments in this industry. Furthermore, close monitoring by academia and the government will be necessary to identify fraud in the cultivated meat industry.

Maximizing the potential of male layer embryos for cultivated chicken meat cell sourcing

  • Sun A Ock;Yeongji Kim;Young-Im Kim;Poongyeon Lee;Bo Ram Lee;Min Gook Lee
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.39 no.3
    • /
    • pp.212-219
    • /
    • 2024
  • Background: This study explores the potential of discarded male layer embryos as a sustainable and non-GMO cell source for cultivated chicken meat production. The research aims to identify efficient methods for isolating muscle progenitor cells (MPCs) with high proliferative potential by conducting transcriptome analysis on thigh muscle tissues from both male and female chick embryos. Methods: Transcriptome analysis was performed on the thigh muscle tissues of male and female chick embryos, aged 12-13 days, (n = 4 each), to investigate the gene expression profiles and identify strategies for efficiently isolating MPCs. This approach aims to pinpoint techniques that would allow for the selection of MPCs with optimal growth and proliferation capabilities. Results: Using heatmap, hierarchical clustering, and multidimensional scaling (MDS), we found no significant sex-based differences in gene expression, except for the overexpression of the female-specific gene LIPBLL. The expression of muscle stem cell factors, including PAX3, PAX7, and other myogenic regulatory genes, showed no significant variation. However, to recover MPC-rich cells isolated from male thigh muscle, we found that by the pre-plating 7 stage, myogenesis-related genes, MYHs and MUSTN1 were minimally expressed, while the cell cycle arrest gene CDKN1A sharply increased. Conclusions: Our findings suggest that simple cell isolation directly from tissue is a more scalable and efficient approach for cultivated meat production, compared to labor-intensive pre-plating methods, making it a viable solution for sustainable research and resource recycling.

The Comparison of Commercial Serum-Free Media for Hanwoo Satellite Cell Proliferation and the Role of Fibroblast Growth Factor 2

  • In-sun Yu;Jungseok Choi;Mina K. Kim;Min Jung Kim
    • Food Science of Animal Resources
    • /
    • v.43 no.6
    • /
    • pp.1017-1030
    • /
    • 2023
  • Fetal bovine serum (FBS), which contains various nutrients, comprises 20% of the growth medium for cell-cultivated meat. However, ethical, cost, and scientific issues, necesitates identification of alternatives. In this study, we investigated commercially manufactured serum-free media capable of culturing Hanwoo satellite cells (HWSCs) to identify constituent proliferation enhancing factors. Six different serum-free media were selected, and the HWSC proliferation rates in these serum-free media were compared with that of control medium supplemented with 20% FBS. Among the six media, cell proliferation rates were higher only in StemFlexTM Medium (SF) and Mesenchymal Stem Cell Growth Medium DXF (MS) than in the control medium. SF and MS contain high fibroblast growth factor 2 (FGF2) concentrations, and we found upregulated FGF2 protein expression in cells cultured in SF or MS. Activation of the fibroblast growth factor receptor 1 (FGFR1)-mediated signaling pathway and stimulation of muscle satellite cell proliferation-related factors were confirmed by the presence of related biomarkers (FGFR1, FRS2, Raf1, ERK, p38, Pax7, and MyoD) as indicated by quantitative polymerase chain reaction, western blotting, and immunocytochemistry. Moreover, PD173074, an FGFR1 inhibitor suppressed cell proliferation in SF and MS and downregulated related biomarkers (FGFR1, FRS2, Raf1, and ERK). The promotion of cell proliferation in SF and MS was therefore attributed to FGF2, which indicates that FGFR1 activation in muscle satellite cells may be a target for improving the efficiency of cell-cultivated meat production.

The Color-Developing Methods for Cultivated Meat and Meat Analogues: A Mini-Review

  • Ermie Jr Mariano;Da Young Lee;Seung Hyeon Yun;Juhyun Lee;Yeongwoo Choi;Jinmo Park;Dahee Han;Jin Soo Kim;Sun Jin Hur
    • Food Science of Animal Resources
    • /
    • v.44 no.2
    • /
    • pp.356-371
    • /
    • 2024
  • Novel meat-inspired products, such as cell-cultivated meat and meat analogues, embrace environmental sustainability, food safety and security, animal welfare, and human health, but consumers are still hesitant to accept these products. The appearance of food is often the most persuasive determinant of purchasing decisions for food. Producing cultivated meat and meat analogues with similar characteristics to conventional meat could lead to increased acceptability, marketability, and profitability. Color is one of the sensorial characteristics that can be improved using color-inducing methods and colorants. Synthetic colorants are cheap and stable, but natural pigments are regarded as safer components for novel food production. The complexity of identifying specific colorants to imitate both raw and cooked meat color lies in the differences in ingredients and methods used to produce meat alternatives. Research devoted to improving the sensorial characteristics of meat analogues has noted various color-inducing methods (e.g., ohmic cooking and pasteurization) and additives (e.g., lactoferrin, laccase, xylose, and pectin). Additionally, considerations toward other meat components, such as fat, can aid in mimicking conventional meat appearance. For instance, the use of plant-based fat replacers and scaffolds can produce a marked sensory enhancement without compromising the sustainability of alternative meats. Moving forward, consumer-relevant sensorial characteristics, such as taste and texture, should be prioritized alongside improving the coloration of meat alternatives.