• Title/Summary/Keyword: cell-adhesion

Search Result 1,134, Processing Time 0.045 seconds

Effect of Ferulic Acid on Cell Viability and Cell Adhesion Activity in Normal Human Gingival Fibroblasts

  • Lee Joo-Hyun;Jin Byung-Jo;Son Il-Hong;Han Du-Seok
    • Biomedical Science Letters
    • /
    • v.10 no.3
    • /
    • pp.269-273
    • /
    • 2004
  • This study was designed to investigate the effect of ferulic acid on cell viability and cell adhesion activity in normal human gingival fibroblasts. The cell viability and cell adhesion activity of ferulic acid was measured by MTT assay or XTT assay, respectively, after normal human gingival fibroblasts were treated with or without ferulic acid for 48 hours. The cell viability of ferolic acid on normal human gingival fibroblasts did not show any decreasement by MTT assay and also, cell adhesion activity did not decreased by XTT assay, respectively, compared with control after cells were treated with various concentrations of ferolic acid for 48 hours. MTT/sub 50/ and XTT/sub 50/ were 2,130.0 μM and 1,773.7 μM ferolic acid, respectively. These results suggest that ferolic acid is non-toxic to normal human gingival fibroblasts by showing no significant differences in the cell viability and the adhesion activity compared with control by colorimetric assay.

  • PDF

Regulatory Effect of Ginsenosides Rh1 on Monocytic U937 Cell Adhesion (홍삼유래 ginsenosides Rh1의 단핵구 U937 세포 유착조절 효과)

  • Kim, Byung-Hun;Cho, Jae-Youl
    • Journal of Ginseng Research
    • /
    • v.33 no.4
    • /
    • pp.324-329
    • /
    • 2009
  • Cell-cell adhesion managed by various adhesion molecules is known to be one of pathophysiological phenomena found in numerous immunological diseases such as rheumatoid arthritis and allergic diseases. In this study, we examined the regulatory role of ginsenosides (G)- Rh1, reported to display anti-inflammatory and anti-allergic effects, on CD29-mediated cell adhesion. G-Rh1 significantly suppressed U937 cell-cell adhesion mediated by CD29 but not CD43. It also blocked U937 cell-fibronectin adhesion, mediated by activated CD29, up to 30%. In agreement, this compound also significantly decreased the surface level of CD29 but not CD43 as well as other costimulatory molecules such as CD69, CD80, and CD86. Therefore, these results suggest that G-Rh1 may have inhibitory function on CD29-mediated cell adhesion events, probably contributing to its anti-inflammatory and anti-allergic activities.

Vascular Endothelial Cadherin-mediated Cell-cell Adhesion Regulated by a Small GTPase, Rap1

  • Fukuhra, Shigetomo;Sakurai, Atsuko;Yamagishi, Akiko;Sako, Keisuke;Mochizuki, Naoki
    • BMB Reports
    • /
    • v.39 no.2
    • /
    • pp.132-139
    • /
    • 2006
  • Vascular endothelial cadherin (VE-cadherin), which belongs to the classical cadherin family, is localized at adherens junctions exclusively in vascular endothelial cells. Biochemical and biomechanical cues regulate the VE-cadherin adhesive potential by triggering the intracellular signals. VE-cadherin-mediated cell adhesion is required for cell survival and endothelial cell deadhesion is required for vascular development. It is therefore crucial to understand how VE-cadherin-based cell adhesion is controlled. This review summarizes the inter-endothelial cell adhesions and introduces our recent advance in Rap1-regulated VE-cadherin adhesion. A further analysis of the VE-cadherin recycling system will aid the understanding of cell adhesion/deadhesion mechanisms mediated by VE-cadherin in response to extracellular stimuli during development and angiogenesis.

Anti-cell Adhesion Effect of PLM-f74 with U937 Cell from Hallophilic Enterobacteria and Identification of Strain

  • Lim, Jong-Kwon;Seo, Hyo-Jin;Shin, Jin-Hyuk;Lee, Se-Young;Kim, Min-Yong;Kim, Jong-Deog
    • 한국생물공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.406-411
    • /
    • 2005
  • Fermented materials with enterobacteria isolated from fusiform fish, have strong anti-angiogenesis effect and anti-cell adhesion effect. PLM-f74 got from 74th fraction of size exclusion chromatography from fermented material, showed strong anti-cell adhesion effect between HUVECs and U937 monocytic cell. Adhesion of U937 cell to HUVEC stimulated with IL-1b was clearly inhibited by PLM-f74 in a dose-dependent manner by 12.1, 21.2, 50.9, and 78.2%, when U937 cells treated with each of the PLM-f74 and stimulated with PMA (100 mg/L) was added onto untreated and unstimulated HUVECs, adhesion was observed by 15.8, 31.9, 70.8, and 102%, when both cell types were pretreated with PLM-f74, the adhesion was prominently decreased by 83.7, 99.2, 110, and 120.8%, with 0.74, 3.7, 7.4, and 18.5ug/mL of PLM-f74, respectively. PLM-f74, also, reduced IL-1-stimulated HUVEC expression of adhesion molecules, VCAM-1, ICAM-1, and E-selectin dose-dependently by ELISA method.

  • PDF

Nephrin phosphorylation regulates podocyte adhesion through the PINCH-1-ILK-α-parvin complex

  • Zha, Dongqing;Chen, Cheng;Liang, Wei;Chen, Xinghua;Ma, Tean;Yang, Hongxia;van Goor, Harry;Ding, Guohua
    • BMB Reports
    • /
    • v.46 no.4
    • /
    • pp.230-235
    • /
    • 2013
  • Nephrin, a structural molecule, is also a signaling molecule after phosphorylation. Inhibition of nephrin phosphorylation is correlated with podocyte injury. The PINCH-1-ILK-${\alpha}$-parvin (PIP) complex plays a crucial role in cell adhesion and cytoskeleton formation. We hypothesized that nephrin phosphorylation influenced cytoskeleton and cell adhesion in podocytes by regulating the PIP complex. The nephrin phosphorylation, PIP complex formation, and F-actin in Wistar rats intraperitoneally injected with puromycin aminonucleoside were gradually decreased but increased with time, coinciding with the recovery from glomerular/podocyte injury and proteinuria. In cultured podocytes, PIP complex knockdown resulted in cytoskeleton reorganization and decreased cell adhesion and spreading. Nephrin and its phosphorylation were unaffected after PIP complex knockdown. Furthermore, inhibition of nephrin phosphorylation suppressed PIP complex expression, disorganized podocyte cytoskeleton, and decreased cell adhesion and spreading. These findings indicate that alterations in nephrin phosphorylation disorganize podocyte cytoskeleton and decrease cell adhesion through a PIP complex-dependent mechanism.

THE ROLE OF MAPK AND PKC-${\delta}$ IN PHOSPHATIDIC ACID-MEDIATED INTERCELLULAR ADHESION MOLECULE-1 EXPRESSION (Phosphatidic acid에 의한 intercellular adhesion molecule-1 발현 조절에 관여한 MAPK와 PKC-${\delta}$의 역할)

  • Cho, Woo-Sung;Yoon, Hong-Sik;Chin, Byung-Rho;Baek, Suk-Hwan
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.33 no.5
    • /
    • pp.445-454
    • /
    • 2007
  • Background: Phosphatidic acid(PA), an important second messenger, is involved in inflammation. Notably, cell-cell interactions via adhesion molecules playa central role in inflammation. This thesis show that PA induces expression of intercellular adhesion molecule-1(ICAM-1) on macrophages and describe the signaling pathways. Materials and methods: Macrophages were cultured in the presence of 10% FBS and assayed cell to cell adhesion using HUVEC. For the gene and protein analysis, RT-PCR, Western blot and flow cytometry were performed. In addition, overexpressed cell lines for dominant negative PKC-${\delta}$ mutant established and tested their effect on the promoter activity and expression of ICAM-1 protein by PA. Results: PA-activated macrophages significantly increased adhering to human umbilical vein endothelial cell and this adhesion was mediated by ICAM-1. Pretreatment with rottlerin(PKC-${\delta}$ inhibitor) or expression of a dominant negative PKC-${\delta}$ mutant, but not Go6976(classical PKC-${\alpha}$ inhibitor) and myristoylated PKC-${\xi}$ inhibitor, attenuated PA-induced ICAM-1 expression. The p38 mitogen-activated protein kinase(MAPK) inhibitor blocked PA-induced ICAM-1 expression in contrast, ERK upstream inhibitor didn't block ICAM-1. Conclusion: These data suggest that PA-induced ICAM-1 expression and cell-cell adhesion in macrophages requires PKC-${\delta}$ activation and that PKC-${\delta}$ activation is triggers to sequential activation of p38 MAPK.

Molecular association of CD98, CD29, and CD147 critically mediates monocytic U937 cell adhesion

  • Kim, Mi-Yeon;Cho, Jae Youl
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.20 no.5
    • /
    • pp.515-523
    • /
    • 2016
  • Adhesion events of monocytes represent an important step in inflammatory responses induced by chemokines. The ${\beta}1$-integrin CD29 is a major adhesion molecule regulating leukocyte migration and extravasation. Although several adhesion molecules have been known as regulators of CD29, the molecular interactions between CD29 and its regulatory adhesion molecules (such as CD98 and CD147) have not been fully elucidated. Therefore, in this study, we examined whether these molecules are functionally, biochemically, and cell-biologically associated using monocytic U937 cells treated with aggregation-stimulating and blocking antibodies, as well as enzyme inhibitors. The surface levels of CD29, CD98, and CD147 (but not CD43, CD44, and CD82) were increased. The activation of CD29, CD98, and CD147 by ligation of them with aggregation-activating antibodies triggered the induction of cell-cell adhesion, and sensitivity to various enzyme inhibitors and aggregation-blocking antibodies was similar for CD29-, CD98-, and CD147-induced U937 cell aggregation. Molecular association between these molecules and the actin cytoskeleton was confirmed by confocal microscopy and immunoprecipitation. These results strongly suggest that CD29 might be modulated by its biochemical and cellular regulators, including CD98 and CD147, via the actin cytoskeleton.

Effect of Ginsenoside Rb1 on Cell Adhesion, Surface Molecule Expression and Morphological Changes (Ginsenoside Rb1의 세포간 유착, 세포표면 단백질 발현 및 세포형태변화에 미치는 효과)

  • Kim, Byung-Hun;Cho, Jae-Youl
    • Journal of Ginseng Research
    • /
    • v.33 no.4
    • /
    • pp.330-336
    • /
    • 2009
  • Cell-cell adhesion managed by various adhesion molecules is known to be one of important phenomena found in numerous immunological responses or diseases such as immunostimulation, rheumatoid arthritis and allergic diseases. In this study, we examined the regulatory role of ginsenosides (G)-Rb1, reported to display immunostimulatory and anticancer effects, on cell adhesion, the up-regulation of surface adhesion molecules and morphological changes using monocytic U937 and macrophage-like RAW264.7 cells. G-Rb1 significantly up-regulated U937 cell-cell adhesion mediated by both CD29 and CD43. It also enhanced U937 cell-fibronectin adhesion, while CD29 blocking antibody P5D2 strongly suppressed it. In agreement, this compound also significantly increased the surface level of CD29 as well as CD43. Furthermore, this compound differentially modulated CD82 up-regulation and morphological changes triggered by lipopolysaccharide (LPS) and phorbol-12-myristate-13-acetate (PMA). Therefore, these results suggest that G-Rb1 may have differential modulatory function on cell adhesion events, surface molecule expression and morphological changes responsible for immune responses.

Certification of Gibroblase Cell Adhesion and Spreading Mediated by Arg-Gly-Asp (RGD) Sequence on Thermo-Reversible Hydrogel

  • NA, KUN;DONG-WOON KIM;KEUN-HONG PARK
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.6
    • /
    • pp.922-927
    • /
    • 2001
  • In an effort to regulate the mammalian cell behavior in entrapment with a gel, we have functionalized hydrogels with the putative cell-binding (-Arg-Gly-Asp-)(RGD) domain. An adhesion molecule of Gly-Arg-Gly-Asp-Ser (GRGDS) peptides, a cell recognition ligand, was induced into thermo-reversible hydrogels, composed of N-isopropylacrylamide with small amounts of acrylic acid (typically 2-5 $mol\%$ in feed), as a biomimetic extracellular matrix (ECM). The GRGDS containing a p(NiPAAm-co-AAc) copolymer gel was studied in vitro for its ability to promote the spreading and viability of cells by introducing a GRGDS sequence. Hydrogel with no adhesion molecule was a poor ECM for adhesion, permiting spreading of only $3\%$ of the seeded cells for 36h. By immobilizing the peptide linkage into the hydrogel, the conjugation of RGD promoted $50\%$ of proliferation for 36h. However, the GREDS sequence, nonadhesive peptide linkage, conjugated hydrogel showed only $5\%$ of the seeded cell for the same time period. In addition, with the serum-free medium, only GRGDS peptides conjugated to hydrogel was able to promotecell spreading, while there was no cell proliferation in the hydrogel without GRGDS. Thus, the GRGDS peptide-conjugated thermo-reversible hydrogel specifically mediated the cell spreading. This result suggests that utilization of peptide sequences conjugating with the cell-adhesive motifs can enhance the degree of cell surface interaction and influence the long-term formation of ECM in vitro.

  • PDF