• 제목/요약/키워드: cell wall proteins

검색결과 103건 처리시간 0.022초

Streptanthus tortus 배양세포에서 미생물 Elicit가 사부형성에 미치는 영향 (Effect of the Elicit of Microorganism on the Formation of Phloem in Suspension Cultures of Streptanthus tortus)

  • 조봉희
    • Journal of Plant Biotechnology
    • /
    • 제30권2호
    • /
    • pp.195-199
    • /
    • 2003
  • Extracts of Escherichia coli as a elicit were treated to suspension cultures of Streptanthus tostus in order to observe the effect on the pholem development. By the elicit treatment, cell wall, sieve endoplasmic reticulum (SER) and p-protein were normally synthesized, but the structure of amyloplast was changed from a round form to irregular and swollen unhalthy form with a tiny starch granular. Oil drops were new synthesized and accumulated in a large oleoplast and proteins were also accumulated in a single membrane. The concentration of sucrose in the phloem, which was induced during the elicit treatment, was higher than normally developed phloem cells. These results suggest that phloem cells might be changed in the normal cycles of metabolism of lipids, carbohydrates and proteins to overcome during the eilicit stress.

Identification and Expression Patterns of fvexpl1, an Expansin-Like Protein-Encoding Gene, Suggest an Auxiliary Role in the Stipe Morphogenesis of Flammulina velutipes

  • Huang, Qianhui;Han, Xing;Mukhtar, Irum;Gao, Lingling;Huang, Rongmei;Fu, Liping;Yan, Junjie;Tao, Yongxin;Chen, Bingzhi;Xie, Baogui
    • Journal of Microbiology and Biotechnology
    • /
    • 제28권4호
    • /
    • pp.622-629
    • /
    • 2018
  • Expansins are cell wall proteins that mediate cell wall loosening and promote specific tissue and organ morphogenesis in plants and in some microorganisms. Unlike plant expansins, the biological functions of fungal expansin-like proteins have rarely been discussed. In the present study, an expansin-like protein-encoding fvexpl1 gene, was identified from Flammulina velutipes by using local BLAST. It consisted of five exons with a total length of 822 bp. The deduced protein FVEXPL1 contained 274 amino acids with a predicted molecular mass and isoelectric point of 28,589 Da and pH 4.93, respectively. The first 19 amino acids from the N terminal are the signal peptide. Phylogenetic analysis and multiple protein alignment indicated FVEXPL1 was an expansin-like protein. The expression level of fvexpl1 gene in the stipe was significantly higher than that in the mycelia, primordia, and cap. However, the expression level of fvexpl1 gene was significantly higher in the fast elongation region of the stipe as compared with the slow elongation region. Expression analysis indicated that fvexpl1 gene might have an auxiliary role in the stipe morphogenesis of F. velutipes.

방사선조사가 Streptococcus mutans에 미치는 영향 (Effect of irradiation on the Streptococcus mutans)

  • 안기동;김규태;최용석;황의환
    • Imaging Science in Dentistry
    • /
    • 제37권1호
    • /
    • pp.35-43
    • /
    • 2007
  • Purpose : To observe direct effect of irradiation on cariogenic Streptooccus mutans. Materials and Methods : S. mutans GS5 was exposed to irradiation with a single absorbed dose of 10, 20, 30, and 40Gy. Viability and changes in antibiotic sensitivity, morphology, transcription of virulence factors, and protein profile of bacterium after irradiation were examined by pour plate, disc diffusion method, transmission electron microscopy, RT-PCR, and SDS-PAGE, respectively. Results : After irradiation with 10 and 20Gy, viability of S. mutans was reduced. Further increase in irradiation dose, however, did not affect the viability of the remaining cells of S. mutans. Irradiated 5. mutans was found to have become sensitive to antibiotics. In particular, the bacterium irradiated with 40Gy increased its susceptibility to cefotaxime, penicillin, and tetracycline. Under the transmission electron microscope, number of morphologically abnormal cells was increased as the irradiation dose was increased. S. mutans irradiated with 10 Gy revealed a change in the cell wall and cell membrane. As irradiation dose was increased, a higher number of cells showed thickened cell wall and cell membrane and Iysis, and appearance of ghost cells was noticeable. In RT-PCR, no difference was detected in expression of gtfB and spap between cells with and without irradiation of 40Gy. In SDS-PAGE, proteins with higher molecular masses were gradually diminished as irradiation dose was increased. Conclusion : These results suggest that irradiation affects the cell Integrity of S. mutans, as observed by SDS-PAGE, and as manifested by the change in cell morphology, antibiotic sensitivity, and eventually viability of the bacterium.

  • PDF

Yeast Single-Cell Protein Production Using Potato Processing Waste Water

  • Park, Eung-Yeal;Crawford, Don-L.;Korus, Roger-A.;Heimsch, Richard-D.
    • Journal of Microbiology and Biotechnology
    • /
    • 제1권3호
    • /
    • pp.212-219
    • /
    • 1991
  • Four species of yeast, Saccharomyces cerevisiae, Candida utilis, Saccharomycopsis flbuligera, and Schwanniomyces castellii were evaluated for their ability to bioconvert potato processing waste water into microbial protein and the resulting single-cell proteins were evaluated as protein sources for rainbow trout, using in vitro analyses. The studies indicated that Schwanniomyces castellii, which utilizes starch dircetly and converts it into cell mass efficiently, was suitable for the bioconversion. In the single-stage continuous bioconversion, the yield S. castellii cell mass, which contained approximately 37% protein, was 77%, at dilution rate 0.25 $h^{-1}$. Reduction of total carbohydrate was 81%. During batch fermentations, cell mass yield was about 72% and total carbohydrate reduction was 81%. Among the yeasts tested, S. castellii possessed the most fragile cell wall and had a favorable amino acid profile for salmonid fish; protein score of 86% (Met). In an in vitro pepsin digestibility test 80% digestibility (23~38% above control) was observed when cells were pre-heated in a steam bath for 30 min. Results presented should be regarded as being preliminary in nature because they were derived from single experiments.

  • PDF

Comparing Protein Expression in Erwinia amylovora Strain TS3128 Cultured under Three Sets of Environmental Conditions

  • Lee, Jongchan;Choi, Junhyeok;Lee, Jeongwook;Cho, Yongmin;Kang, In-Jeong;Han, Sang-Wook
    • The Plant Pathology Journal
    • /
    • 제38권4호
    • /
    • pp.410-416
    • /
    • 2022
  • Erwinia amylovora, the causal agent of fire-blight disease in apple and pear trees, was first isolated in South Korea in 2015. Although numerous studies, including omics analyses, have been conducted on other strains of E. amylovora, studies on South Korean isolates remain limited. In this study, we conducted a comparative proteomic analysis of the strain TS3128, cultured in three media representing different growth conditions. Proteins related to virulence, type III secretion system, and amylovoran production, were more abundant under minimal conditions than in rich conditions. Additionally, various proteins associated with energy production, carbohydrate metabolism, cell wall/membrane/envelope biogenesis, and ion uptake were identified under minimal conditions. The strain TS3128 expresses these proteins to survive in harsh environments. These findings contribute to understanding the cellular mechanisms driving its adaptations to different environmental conditions and provide proteome profiles as reference for future studies on the virulence and adaptation mechanisms of South Korean strains.

산-생장설에 대한 최근 연구 동향 (Recent research progress on acid-growth theory)

  • 이상호
    • Journal of Plant Biotechnology
    • /
    • 제43권4호
    • /
    • pp.405-410
    • /
    • 2016
  • Auxins are essential in plant growth and development. The auxin-stimulated elongation of plant cells has been explained by the "acid-growth theory", which was proposed forty years ago. According to this theory, the auxin activates plasma membrane $H^+-ATPase$ to induce proton extrusion into the apoplast, promoting cell expansion through the activation of cell wall-loosening proteins such as expansins. Even though accepted as the classical theory of auxin-induced cell growth for decades, the major signaling components comprising this model were unknown, until publication of recent reports. The major gap in the acid growth theory is the signaling mechanism by which auxin activates the plasma membrane $H^+-ATPase$. Recent genetic, molecular, and biochemical approaches reveal that several auxin-related molecules, such as TIR1/AFB AUX/IAA coreceptors and SMALL AUXIN UP RNA (SAUR), serve as important components of the acid-growth model, phosphorylating and subsequently activating the plasma membrane $H^+-ATPase$. These researches reestablish the four-decade-old theory by providing us the detailed signaling mechanism of auxininduced cell growth. In this review, we discuss the recent research progress in auxin-induced cell elongation, and a set of possible future works based on the reestablished acid-growth model.

식물의 자가불화합성, 최근의 진보 (Recent Advances in the Studies of Self-Incompatibility of plants)

  • 한창열;한지학
    • 식물조직배양학회지
    • /
    • 제21권5호
    • /
    • pp.253-275
    • /
    • 1994
  • Many flowering plants possess genetically controlled self -incompatibility (SI) system that prevents inbreeding and promotes outcrosses. SI is usually controlled by a single, multiallelic S-locus. In gametophytically controlled system, SI results when the S-allele of the pollen is matched by one of the two S-alleles in the style, while in the sporophytic system self-incompatible reaction occurs by the interaction between the pistil genotype and genotype of, not the pollen, but the pollen parent In the former system the self-incompatible phenotype of pollen is determined by the haploid genome of the pollen itself but in the latter the pollen phenotype is governed by the genotype of the pollen parent along with the occurrence of either to-dominant or dominant/recessive allelic interactions. In the sporophytic type the inhibition reaction occurs within minutes following pollen-stigma contact, the incompatible pollen grains usually failing to germinate, whereas in gametophytic system pollen tube inhibition takes place during growth in the transmitting tissue of the style. Recognition and rejection of self pollen are the result of interaction between the S-locus protein in the pistil and the pollen protein. In the gametophytic SI the S-associated glycoprotein which is similar to the fungal ribonuclease in structure and function are localized at the intercellular matrix in the transmitting tissue of the style, with the highest concentration in the collar of the stigma, while in the sporophytic SI deposit of abundant S-locus specific glycoprotein (SLSG).is detected in the cell wall of stigmatic papillae of the open flowers. In the gametophytic system S-gene is expressed mostly at the stigmatic collar the upper third of the style length and in the pollen after meiosis. On the other hand, in the sporophytic SI S-glycoprotein gene is expressed in the papillar cells of the stigma as well as in e sporophytic tape is cells of anther wall. Recognition and rejection of self pollen in the gametophytic type is the reaction between the ribonuclease in the transmitting tissue of the style and the protein in the cytoplasm of pollen tube, whereas in the sporophytic system the inhibition of selfed pollen is caused by the interaction between the Sycoprotein in the wall of stigmatic papillar cell and the tapetum-origin protein deposited on the outer wall of the pollen grain. The claim that the S-allele-associated proteins are involved in recognition and rejection of self pollen has been made merely based on indirect evidence. Recently it has been verified that inhibition of synthesis of S$_3$ protein in Petunia inflata plants of S$_2$S$_3$ genotype by the antisense S$_3$ gene resulted in failure of the transgenic plant to reject S$_3$ pollen and that expression of the transgenic encoding S$_3$ protein in the S$_1$S$_2$ genotype confers on the transgenic plant the ability to reject S$_3$ pollen. These finding Provide direct evidence that S-proteins control the s elf-incompatibility behavior of the pistil.

  • PDF

천식에서 기도평활근의 증식과 합성 반응에 대한 최신지견 (Proliferative and Synthetic Responses of Airway Smooth Muscle in Asthma)

  • 심정연
    • Clinical and Experimental Pediatrics
    • /
    • 제48권6호
    • /
    • pp.580-587
    • /
    • 2005
  • New evidence is emerging that airway smooth muscle(ASM) may act as an immunomodulatory cell by providing pro-inflammatory cytokines and chemokines, polypeptide growth factors, extracellular matrix proteins, cell adhesion receptors and co-stimulatory molecules. ASM can promote the formation of the interstitial extracellular matrix, and potentially contribute to the alterations within the extracellular matrix in asthma. In addition, extracellular matrix components can alter the proliferative, survival, and cytoskeletal synthetic function of ASM cells through integrin-directed signaling. Increased ASM mass is one of the most important features of the airway wall remodeling process in asthma. Three different mechanisms may contribute to the increased ASM mass : cell proliferation, increased migration and decreased rate of apoptosis. The major signaling pathways of cell proliferation activated by ASM mitogens are those dependent on extracellular signal-regulated kinase and phosphoinositide 3'-kinase. The key signaling mechanisms of cell migration have been identified as the p38 mitogen-activated protein kinase and the p21-activated kinase 1 pathways. ASM cells contain ${\beta}2$-adrenergic receptors and glucocorticoid receptors. They may represent a key target for ${\beta}2$-adrenergic receptor agonist/corticosteroid interactions which have antiproliferative activity against a broad spectrum of mitogens.

AltMV TGB1 Nucleolar Localization Requires Homologous Interaction and Correlates with Cell Wall Localization Associated with Cell-to-Cell Movement

  • Nam, Jiryun;Nam, Moon;Bae, Hanhong;Lee, Cheolho;Lee, Bong-Chun;Hammond, John;Lim, Hyoun-Sub
    • The Plant Pathology Journal
    • /
    • 제29권4호
    • /
    • pp.454-459
    • /
    • 2013
  • The Potexvirus Alternanthera mosaic virus (AltMV) has multifunctional triple gene block (TGB) proteins, among which our studies have focused on the properties of the TGB1 protein. The TGB1 of AltMV has functions including RNA binding, RNA silencing suppression, and cell-to-cell movement, and is known to form homologous interactions. The helicase domains of AltMV TGB1 were separately mutated to identify which regions are involved in homologous TGB1 interactions. The yeast two hybrid system and Bimolecular Fluorescence Complementation (BiFC) in planta were utilized to examine homologous interactions of the mutants. Helicase motif I of AltMV TGB1 was found to be critical to maintain homologous interactions. Mutations in the remaining helicase motifs did not inhibit TGB1 homologous interactions. In the absence of homologous interaction of TGB1, subcellular localization of helicase domain I mutants showed distinctively different patterns from that of WT TGB1. These results provide important information to study viral movement and replication of AltMV.

Synechoscoccus sp. cyanophage 구조단백질의 특성 (Characteristics of Structural Proteins of Synechococcus sp. Cyanophage)

  • 김승원;김민;임미혜;최영길
    • 미생물학회지
    • /
    • 제33권4호
    • /
    • pp.242-246
    • /
    • 1997
  • Synechococcus sp. cyanophage의 SDS-PAGE 수행 결과 구조단백질은 두 개의 major protein(97 kDa, 52 kDa)과 최소 일곱 개의 minor protein(70 kDa, 65 kDa, 60 kDa, 40 kDa, 35 kDa, 28 kDa, 6 kDa)으로 구성되어 있는 것으로 나타났다. Subunit들은 서로 disulfide bond로 연결되어 있지는 않지만 비공유적 결합으로 multimer를 형성하여 phage particle을 구성하고 있는 것으로 보인다. 또한 heat-killed Micrococcus luteus cell을 기질로 이용한 renaturing SDS-PAGE 방법으로 phage particle내의 세포벽 분해능을 살표본 결과 52 kDa 부근에서 세포벽 분해활성이 발견되었다. 이러한 세포벽 분해활성은 최적 pH가 9~10 사이이며 EDTA에 대한 낮은 저해를 나타내었다.

  • PDF