• Title/Summary/Keyword: cell wall polysaccharides

Search Result 67, Processing Time 0.02 seconds

Histological and Cytological Changes Associated with Susceptible and Resistant Responses of Chili Pepper Root and Stem to Phytophthora capsici Infection

  • Kim, Sang-Gyu;Kim, Young-Ho
    • The Plant Pathology Journal
    • /
    • v.25 no.2
    • /
    • pp.113-120
    • /
    • 2009
  • Microscopic study of chili pepper (Capsicum annuum L.) infected with Phytophthora capsici, causing Phytophthora blight of chili pepper, was conducted to compare histological and cytological characteristics in the root and stem of susceptible (C. annuum cv. Bugang) and resistant (C. annuum cv. CM334) pepper cultivars. The susceptible pepper roots and stems were extensively penetrated and invaded by the pathogen initially into epidermal cells and later cortical and vascular cells. Host cell walls adjacent to and invaded by the infecting hyphae were partially dissolved and structurally loosened with fine fibrillar materials probably by cell wall-degrading enzymes of the pathogen. In the resistant pepper, the pathogen remained on root epidermal surface at one day after inoculation, embedded and captured in root exudation materials composed of proteins and polysaccharides. Also the pathogen appeared to be blocked in its progression at the early infection stages by thickened middle lamellae. At 3 days after inoculation, the oomycete hyphae were still confined to epidermal cells of the root and at most outer peripheral cortical cells of the stem, resulting from their invasion blocked by wound periderms formed underneath the infection sites and/or cell wall appositions bounding the hyphal protrusions. All of these aspects suggest that limitation of disease development in the resistant pepper may be due to the inhibition of the pathogen penetration, infection, invasion, and colonization by the defense structures such as root exudation materials, thickened middle lamellae, wound peridems and cell wall appositions.

AtMYB7 Acts as a repressor of lignin biosynthesis in Arabidopsis (애기장대 MYB7 유전자의 리그닌 생합성 억제 조절)

  • Kim, Won-Chan
    • Journal of Applied Biological Chemistry
    • /
    • v.59 no.3
    • /
    • pp.215-220
    • /
    • 2016
  • Abstract Secondary cell wall is the most abundant biomass produced by plants. Plant secondary cell wall is composed of a complex mixture of cellulose, hemicellulose, and lignin. Lignin, a phenolic polymer that hinders the degradation of cell wall polysaccharides to simple sugars destined for fermentation to bio-ethanol. Cell wall biosynthesis pathway-specific biomass engineering offers an attractive 'genetic pretreatment' strategy to improve bioenergy feedstock. Recently, we found a transcription factor, MYB7, which is a transcriptional switch that may turns off the genes necessary for lignin biosynthesis. To gain insights into MYB7 mediated transcriptional regulation, we first established a dominant suppression system in Arabidopsis by expressing MYB7-SRDX. Then we used a transient transcriptional activation assay to confirm that MYB7 suppress the transcription of the lignin biosynthetic gene. Taken together, we conclude that MYB7 function as a repressor of the genes involved in the lignin biosynthesis.

Structural Characterization of Physiologically Active Polysaccharides from Natural Products (Arabidopsis)

  • Shin, Kwang-Soon;Darvill, Alan G.
    • Food Science and Biotechnology
    • /
    • v.15 no.3
    • /
    • pp.447-452
    • /
    • 2006
  • To determine the functions of specific cell wall polysaccharides, polysaccharides of three mutants, mur3-1, mur3-2, and mur3-3, obtained from Arabidopsis wild type, underwent structural characterization. Upon sequential separation of pectins (RG-I and RG-II) and cross-linking glycans (xyloglucan, XG), only XG was affected by the mud mutation. Wild-type XG contained a considerable amount of fucose, whereas the fucose level in mur3 XGs was less than 20% that of wild type. Further analysis of XGs by matrix-assisted laser-induced/ionization time-of-flight (MALDI-TOF) mass spectrometry indicated that mud lines considerably or completely lost the fucosylated XG oligosaccharides such as XXFG and XLFG and the double-galactosylated oligosaccharide XLLG $^1H$-NMR spectroscopic analyses of the XG oligosaccharides from mur3-3 plant revealed the absence of fucose and a galactose level in the galactosylated side chain that was reduced by 40% compared to that of Arabidopsis wild-type plant. In contrast, 85% less fucose and a slight loss of galactose were observed in the mur3-1 and mur3-2 lines which show normal growth habit. Of the three Arabidopsis mur3 lines studied here, mur3-3 is disrupted by a T-DNA insertion in the exon of MUR3 which encodes XG-specific galactosyltransferase, and exhibits slight dwarfism. These results indicated that the T-DNA insertion at the MUR3 locus did not induce the complete loss of galactose in XG, and that galactose, rather than fucose, in the XG side chains made a major contribution to overall wall strength.

Characterization and distribution of phenolics in carrot cell walls

  • Kang, Yoon-Han
    • Proceedings of the Korean Society of Postharvest Science and Technology of Agricultural Products Conference
    • /
    • 2003.10a
    • /
    • pp.134.1-134
    • /
    • 2003
  • The purpose of this study was to investigate the release of p-hydroxybenzoic acid and other compounds from cell wall materials(CWM) and their cellulose fraction from carrot with chemical and enzymatic hydrolysis. To investigate this effect on cell wall chemistry of carrot, alcohol insoluble residue(AIR) of CWM were prepared and were extracted sequentially with water, imidazole, CDTA(-1, -2), Na$_2$CO$_3$(-1, -2), KOH(0.5, 1.0 and 4M), to leave a residue. These were analysed for their carbohydrate and phenolic acids composition. Arabinose and galactose were the main noncellulosic sugars. Phenolics esterified to cell walls in carrot were found to consist primarily of p-hydroxybenzoic acid with minor contribution from vanillin, ferulic acid and p-hydroxybenzaldehyde. p-Hydroxybenzoic acid was quite strongly bound to the cell wall. The contents of p-hydroxybenzoic acid in 0.5M KOH, Na$_2$CO$_3$-2, IM KOH, and ${\alpha}$-cellulose were 2,097, 1,360, 1,140, and 717 $\mu\textrm{g}$/g AIR from CWM, respectively. Alkali labile unknown aromatic compound(C$\sub$7/H$\sub$10/O$_2$) was found in ${\alpha}$ -cellulose hydrolyzate digested with driselase and cellulase. This compound was also found in hydrolyzate of 2 M trifluoroacetic acid at 120$^{\circ}C$ for 2 hours. Driselase treatment solubilized only 46.6 $\mu\textrm{g}$/g of the p-hydroxybenzoic acid from carrot AIR. These results indicate that p-hydroxybenzoic acid was associated with neutral polysaccharides, long chain galactose and branched arabinan from graded alcohol precipitation.

  • PDF

Anti-inflammatory Effect of Polysaccharide Derived from Commercial Kanjang on Mast Cells (비만세포에서 시판 간장 유래 다당류의 항염증 효과)

  • Ko, Yu-Jin;Lee, Gyeong-Ran;Ryu, Chung-Ho
    • Journal of Life Science
    • /
    • v.23 no.4
    • /
    • pp.569-577
    • /
    • 2013
  • Soy sauce is a traditional fermented seasoning in several oriental countries, such as Korea and Japan, and recently it has been reported to have biological activities. In Korean soy sauce, soybeans and wheat are the two main raw materials. Polysaccharides that originate from the cell wall of soybeans are resistant to enzymatic hydrolysis. These polysaccharides remain in the soy sauce even after fermentation and are termed Kanjang polysaccharides (KPS). In this study, polysaccharides were obtained from dialysate of different soy sauces labeled as A~T and manufactured by fermentation or the acid-hydrolyzate method. We investigated anti-inflammatory activities by examining the effects of these KPS on proinflammatory cytokine release and mRNA expression in mast cells. Histamine and ${\beta}$-hexosaminidase release were strongly decreased by the KPS treatment in RBL-2H3 cells. Treatment with KPS clearly reduced mRNA expression and the release of the proinflammatory cytokines interleukin (IL)-6, IL-8, and tumor necrosis factor-alpha (TNF-${\alpha}$) in PMACI-stimulated HMC-1 cells. In particular, KPS derived from fermented Kanjang products showed a significant anti-inflammation effect on mast cells compared to the acid-hydrolyzed Kanjang products. This study suggests that KPS appear to be effective in suppressing allergic inflammatory reactions.

STUDIES ON THE EXTRACELLULAR POLYSACCHARIDES PRODUCED BY ISOLATED DENTAL PLAQUE STREPTOCOCCI (Dental Plaque Streptococci가 생산하는 세포외 다당류에 관한 연구)

  • Chung, Tai-Young
    • The Journal of the Korean dental association
    • /
    • v.9 no.12
    • /
    • pp.819-822
    • /
    • 1971
  • For this investigation, author isolated Streptococcus mitis strain SD-9 from the bacterial flora in the human dental plaque, which was incubated in brain-heart infusion media containing 5% sucrose at 37℃ for 24 hours. For the cytochemical demonstration of polysaccharide produced by this strain, a modified thiosemicarbazide osmium method (Critchley et al., 1967) was used. After fixation with this reagent, the harvested cells was suspended in 1% agar for the higher concentration of cells(Kellenberger et al., 1964). And they were dehydrated in the various concentration of ethanol, and embedded in Epon 812(Luft, 1961). Sectioning was done with the Sorvall MT-2 Porter Blum ultramicrotome by means of a glass knife, and the sections were stained with saturated uranyl acetate and lead citrate (Raynolds, 1963). All preparations were examined in a electron microscope, Hitachi HU-ll E-1 type. The morphological features of extracellular polysaccharide produced by Streptococcus mitis strain SD-9 were appeared in 3 structurally different forms, those are, electron dense fibrillar material linearly arranged adjacent to the outer surface of cell wall, highly electron dense globular material adjacent to the outer surface of cell wall, and strutureless fluffy meshwork of possible very fine filament.

  • PDF

Changes in the Non-cellulosic Monosaccharides of Cell Wall Polysaccharides of Persimmon Fruits during Maturation and Postharvest (감과실의 성숙과 추숙중의 세포벽 다당류의 비섬유성 단당류의 변화)

  • Shin, Seung-Ryeul;Song, Jun-Hee;Kim, Soon-Dong;Kim, Kwang-Soo
    • Korean Journal of Food Science and Technology
    • /
    • v.22 no.7
    • /
    • pp.743-747
    • /
    • 1990
  • Glucose, arabinose and total non-cellulosic neutral sugar contents of alcohol-insoluble substance were increased during maturation of persimmon, but arabinose, galactose and total non-cellulosic neutral sugar contents were decreased in soft persimmon. The main non-cellulosic neutral sugars of cell wall were galactose, arabinose and glucose. Arbinose and galactose contents were decreased during maturity and this tend was remarkable in soft persimmon. Pectic fraction contained $70{\sim}82%$ of uronic acid, and galactose, arabinose and uronic acid of pectic fraction were decreased. The main non-cellulosic neutral sugars of hemicelluloses were glucose, xylose, and galactose. Galactose was decreased during maturation and postharvest, and contents of non-cellulosic neutral sugar were decreased in soft persimmon.

  • PDF

Changes in Cell Wall Components, and Solubilization and Depolymerization of Pectin and Neutral Sugar Polymers during Softening of 'Tsugaru' Apples ('쓰가루'사과의 연화에 따른 세포벽성분의 변화와 펙틴 및 중성다당류의 가용화와 분해)

  • Choi, Cheol;Kang, In-Kyu
    • Journal of Life Science
    • /
    • v.16 no.5
    • /
    • pp.834-839
    • /
    • 2006
  • This study was carried out to investigate changes in cell wall components and solubilization and depolymerization of pectin and neutral sugar polymers during softening of 'Tsugaru' apples. Pectic polysaccharides were solubilized in different solvents, distilled-water, 0.05 M CDTA, 0.05 M $Na_2CO_3$, and 8 M KOH, from cell wall materials during fruit softening. The uronic acid contents in distilled-water fraction rapidly increased along with fruit softening at 4 weeks after ambient storage. In the change of non-cellulosic neutral sugars in the cell wall of ‘Tsugaru’ fruits, the major sugar was galactose and arabinose in distilled-water, 0.05 M CDTA and 0.05 M $Na_2CO_3$ soluble fractions, and it was glucose, galactose and xylose in 8 M KOH fraction. Especially the change of galactose contents in distilled-water fraction was increased greatly along with fruit softening. When uronic acid polymers (UAP) and carbohydrate polymers (CP) in distilled-water fraction were filtered and separated using Sepharose CL-2B column, the high molecular UAP and CP were degraded to the low molecular ones from at harvest to softening fruit. Thus, the amount of high molecular polymers were greatly decreased along with fruit softening.

Characterization and Action Mode of Anti-Complementary Substance Prepared from Lactobacillus plantarum (Lactobacillus plantarum 균체 중 항보체 활성물질의 특성과 작용양식)

  • Kim, Jang-Hyun;Shin, Kwang-Soon;Lee, Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.34 no.2
    • /
    • pp.290-295
    • /
    • 2002
  • Among 12 lactic acid bacteria examined for their abilities to activate the complement system by hemolytic complement assay $(TCH_{50})$, Lactobacillus plantarum previously isolated from Kimchi showed high anti-complementary activity. The anti-complementary activity of the cell wall fraction of L. plantarum was more potent than that of the cytosol fraction, and both activities showed dose dependency. These high activities of the cytosol and the cell wall fractions were relatively resistant to the digestion with pronase, but sharply decreased after the treatment of $NaIO_4$. These results suggested that the complement activation by the cytosol and the cell wall fractions was mainly due to their polysaccharides. By the cross-immunoelectrophoresis using anti-human C3, the C3 activation products from both fractions were identified in $Ca^{++}$-free condition. Anti-complementary activity $(ITCH_{50})$ of the cell wall fraction was retained under the same condition, whereas that of the cytosol fraction was reduced considerably. From these results, it was inferred that the mode of complement activation by the cell wall fraction was mainly via alternative pathway, and that of the cytosol fraction was via both alternative and classical pathways.

Effect of Lactic Fermentation and Spray Drying Process on Bioactive Compounds from Ngoc Linh Ginseng Callus and Lactobacillus plantarum Viability

  • Dong, Lieu My;Linh, Nguyen Thi Thuy;Hoa, Nguyen Thi;Thuy, Dang Thi Kim;Giap, Do Dang
    • Microbiology and Biotechnology Letters
    • /
    • v.49 no.3
    • /
    • pp.346-355
    • /
    • 2021
  • Ngoc Linh ginseng is one of the most valuable endemic medicinal herbs in Vietnam. In this study, Ngoc Linh ginseng callus was fermented by Lactobacillus plantarum ATCC 8014 (at 6, 7, and 8 log CFU/ml) to evaluate the extraction efficiency of bioactive compounds. The post-fermentation solution was spray-dried using maltodextrin with or without Stevia rebaudiana (3% and 6% v/v) as the wall material. Bioactive compounds such as polyphenols, polysaccharides, and total saponins, and L. plantarum viability during fermentation and after spray-drying, as well as under simulated gastric digestion, were evaluated in this study. The results showed that probiotic density had a significant effect on bioactive compounds, and L. plantarum at 8 log CFU/ml showed the best results with a short fermentation time compared to other tests. The total content of polyphenols, polysaccharides, and saponins reached 5.16 ± 0.18 mg GAE/g sample, 277.2 ± 6.12 mg Glu/g sample, and 4.17 ± 0.15 mg/g sample, respectively after 20 h of fermentation at the initial density of L. plantarum (8 log CFU/ml). Although there was no difference in the particle structure of the preparation, the microencapsulation efficiency of the bioactive compound in the samples containing S. rebaudiana was higher than that with only maltodextrin. The study also indicated that adding S. rebaudiana improved the viability of L. plantarum in gastric digestion. These results showed that S. rebaudiana, a component stimulating probiotic growth, combined with maltodextrin as a co-prebiotic, improved the survival rate of L. plantarum in simulated gastric digestion.