• 제목/요약/키워드: cell wall integrity

검색결과 32건 처리시간 0.017초

Calcineurin-Responsive Transcription Factor CgCrzA Is Required for Cell Wall Integrity and Infection-Related Morphogenesis in Colletotrichum gloeosporioides

  • Wang, Ping;Li, Bing;Pan, Yu-Ting;Zhang, Yun-Zhao;Li, De-Wei;Huang, Lin
    • The Plant Pathology Journal
    • /
    • 제36권5호
    • /
    • pp.385-397
    • /
    • 2020
  • The ascomycete fungus Colletotrichum gloeosporioides infects a wide range of plant hosts and causes enormous economic losses in the world. The transcription factors (TFs) play an important role in development and pathogenicity of many organisms. In this study, we found that the C2H2 TF CgCrzA is localized in both cytoplasm and nucleus under standard condition, and it translocated from cytoplasm to nucleus in a calcineurin-dependent manner. Moreover, the ΔCgCrzA was hypersensitive to cell wall perturbing agents and showed severe cell wall integrity defects. Deletion of the CgCRZA inhibited the development of invasive structures and lost pathogenicity to plant hosts. Our results suggested that calcineurin-responsive TF CgCrzA was not only involved in regulating cell wall integrity, but also in morphogenesis and virulence in C. gloeosporioides.

Myricetin Disturbs the Cell Wall Integrity and Increases the Membrane Permeability of Candida albicans

  • Lee, Heung-Shick;Kim, Younhee
    • Journal of Microbiology and Biotechnology
    • /
    • 제32권1호
    • /
    • pp.37-45
    • /
    • 2022
  • The fungal cell wall and membrane are the principal targets of antifungals. Herein, we report that myricetin exerts antifungal activity against Candida albicans by damaging the cell wall integrity and notably enhancing the membrane permeability. In the presence of sorbitol, an osmotic protectant, the minimum inhibitory concentration (MIC) of myricetin against C. albicans increased from 20 to 40 and 80 ㎍/ml in 24 and 72 h, respectively, demonstrating that myricetin disturbs the cell wall integrity of C. albicans. Fluorescence microscopic images showed the presence of propidium iodide-stained C. albicans cells, indicating the myricetin-induced initial damage of the cell membrane. The effects of myricetin on the membrane permeability of C. albicans cells were assessed using crystal violet-uptake and intracellular material-leakage assays. The percentage uptakes of crystal violet for myricetin-treated C. albicans cells at 1×, 2×, and 4× the MIC of myricetin were 36.5, 60.6, and 79.4%, respectively, while those for DMSO-treated C. albicans cells were 28.2, 28.9, and 29.7%, respectively. Additionally, myricetin-treated C. albicans cells showed notable DNA and protein leakage, compared with the DMSO-treated controls. Furthermore, treatment of C. albicans cells with 1× the MIC of myricetin showed a 17.2 and 28.0% reduction in the binding of the lipophilic probes diphenylhexatriene and Nile red, respectively, indicating that myricetin alters the lipid components or order in the C. albicans cell membrane, leading to increased membrane permeability. Therefore, these data will provide insights into the pharmacological worth of myricetin as a prospective antifungal for treating C. albicans infections.

Biological function of CpSlt2, an ortholog of the cell wall integrity (CWI) MAPK of Saccharomyces cerevisiae, in the chestnut blight fungus Cryphonectria parasitica

  • So, Kum-Kang;Ko, Yo-Han;Chun, Jeesun;Kim, Jung-Mi;Kim, Dae-Hyuk
    • 한국균학회소식:학술대회논문집
    • /
    • 한국균학회 2018년도 춘계학술대회 및 임시총회
    • /
    • pp.11-11
    • /
    • 2018
  • Cryphonectria parasitica, chestnut blight fungus, has a characteristic of decreasing pathogenicity when infected with Cryphonectria hypovirus 1. C. parasitica is known to be one of the most representative model systems used to observe the interaction between viruses, plants and fungi. The mitogen-activated protein kinase (MAPK) pathway, which is well conserved in various organisms ranging from yeast to humans, functions in relaying phosphorylation-dependent signals within MAPK cascades to diverse cellular functions involved in the regulation of pheromone, cell wall integrity, and osmotolerance in filamentous fungi. Several genes in the MAPK pathway were revealed to be regulated by hypovirus, or to be involved in pathogenicity in C. parasitica. Among these pathways, the CWI pathway has aroused interest because CpBck1, an ortholog of yeast Bck1 (a CWI MAPKKK), was previously reported to be involved in cell wall integrity and sectorization. Interestingly, sporadic sectorization was observed in the CpBck1 mutant and sectored phenotypes were stably inherited in the progeny that were successively transferred from sectored mycelia. In this study, we analyzed the biological function of CpSlt2, downstream gene of CpBck1, to confirm whether the sectorization phenomenon occurred in the specific single gene or cell wall integrity (CWI) pathway. As results, the CpSlt2-null mutant exhibited marked changes in colonial growth, near absence of conidiation and aerial hyphae, abnormal pigmentation, CWI-related phenotypic defects, and dramatically impaired virulence. As cultivation of the mutant strains progressed, the majority of the colonies showed sporadic sectorization and mycelia from the sectored area stably maintained the sectored phenotype. These results suggest that the unique sectorization is CWI pathway-specific, though the components in the same CWI pathway have common and specific functions.

  • PDF

Characterization of Cell Wall Proteins from the soo1-1/ret1-1 Mutant of Saccharomyces cerevisiae

  • Lee, Dong-Won;Kim, Ki-Hyun;Chun, Se-Chul;Park, Hee-Moon
    • Journal of Microbiology
    • /
    • 제40권3호
    • /
    • pp.219-223
    • /
    • 2002
  • In order to investigate the function of Soo1p/${\alpha}$-COP during post-translational modification and intra-cellular transport of cell wall proteins in Saccharomyces cerevisiae, cell wall proteins from the soo1-1/ret1-1 mutant cells were analyzed. SDS-PAGE analysis of biotin labeled cell wall proteins suggested that the soo1-1 mutation impairs post-translational modification of cell wall proteins, such as N- and/ or Ο-glycosylation. Analysis of cell wall proteins with antibodies against ${\beta}$-1,3-glucan and ${\beta}$-1,6-glucan revealed alteration of the linkage between cell wall proteins and ${\beta}$-glucans in the soo1-1 mutant cells. Compositional sugar analysis of the cell wall proteins also suggested that the soo1-1 mutation impairs glycosylation of cell wall protein in the ER, which is crucial for the maintenance of cell wall integrity.

p-Anisaldehyde Exerts Its Antifungal Activity Against Penicillium digitatum and Penicillium italicum by Disrupting the Cell Wall Integrity and Membrane Permeability

  • Che, Jinxin;Chen, Xiumei;Ouyang, Qiuli;Tao, Nengguo
    • Journal of Microbiology and Biotechnology
    • /
    • 제30권6호
    • /
    • pp.878-884
    • /
    • 2020
  • Penicillium digitatum and P. italicum are the two important postharvest pathogens in citrus, causing about 90% of the total loss of citrus fruit during storage and transportation. Natural fungicides such as essential oils have been widely used instead of chemical fungicides for preventing and controlling postharvest diseases. In this research, p-anisaldehyde exhibited a strong inhibitory effect on P. digitatum and P. italicum, with the minimum inhibitory concentration and minimum fungicidal concentration values of both being 2.00 μl/ml. Additionally, p-anisaldehyde visibly inhibited both the green mold and blue mold development of citrus fruits inoculated with P. digitatum and P. italicum. The mycelia morphologies of these pathogens were greatly altered, and the membrane permeability and cell wall integrity of mycelia were severely disrupted under p-anisaldehyde treatment. These results suggest that the antifungal activity of p-anisaldehyde against P. digitatum and P. italicum can be attributed to the disruption of the cell wall integrity.

The Cell Wall Integrity MAP Kinase Signaling Pathway Is Required for Development, Pathogenicity, and Stress Adaption of the Pepper Anthracnose Fungus Colletotrichum scovillei

  • Teng Fu;Sung Wook Kang;Yong-Won Song;Kyoung Su Kim
    • Mycobiology
    • /
    • 제51권3호
    • /
    • pp.178-185
    • /
    • 2023
  • The cell wall integrity (CWI) signaling pathway plays important roles in the dissemination and infection of several plant pathogenic fungi. However, its roles in the pepper fruit anthracnose fungus Colletotrichum scovillei remain uninvestigated. In this study, the major components of the CWI signaling pathway-CsMCK1 (MAPKKK), CsMKK1 (MAPKK), and CsMPS1 (MAPK)-were functionally characterized in C. scovillei via homology-dependent gene replacement. The ΔCsmck1, DCsmkk1, and ΔCsmps1 mutants showed impairments in fungal growth, conidiation, and tolerance to CWI and salt stresses. Moreover, ΔCsmck1, ΔCsmkk1, and ΔCsmps1 failed to develop anthracnose disease on pepper fruits due to defects in appressorium formation and invasive hyphae growth. These results suggest that CsMCK1, CsMKK1, and CsMPS1 play important roles in mycelial growth, conidiation, appressorium formation, plant infection, and stress adaption of C. scovillei. These findings will contribute to a better understanding of the roles of the CWI signaling pathway in the development of pepper fruit anthracnose disease.

COPI 소낭 구성체인 α-COP의 돌연변이가 균류 세포벽 합성에 미치는 영향 (Effect of Mutation in α-COP, A Subunit of the COPI Vesicle, on Cell Wall Biogenesis in Fungi)

  • 이환희;박희문
    • 한국균학회지
    • /
    • 제35권1호
    • /
    • pp.1-10
    • /
    • 2007
  • 세포벽은 진균류의 생존과 삼투안전성 유지에 필수적인 구조체로, 세포부착성 단백질이나 가수분해효소 등과 같은 생물학적 활성을 갖는 다양한 단백질이 결합하거나 그 속에 자리잡고 작용할 수 있게 한다. 최근 효모류인 Saccharomyces cerevisiae와 사상균인 Aspergillus nidulans에서 세포 내 단백질 분비 소낭의 하나인 COPI 소낭을 구성하는 ${\alpha}-COP$ 단백질에 돌연변이가 일어날 경우, 온도의존적 삼투감수성이 나타나는 것으로 밝혀졌다. 이러한 사실은 ${\alpha}-COP$이 베타-1,3-글루칸 합성효소 복합체를 구성하는 단백질과 세포벽 단백질의 이송과정에 중요한 역할을 함으로써 세포벽 안정성 유지에 기여함을 시사하는 것이다. 본 총설에서는 세포 내 단백질 이송기구 중에서도 COPI 소낭을 구성하는 ${\alpha}-COP$과 균류의 세포벽 형성과정과의 관계에 대하여 기술하는 한편, 단백질 분비기구에 결손이 생긴 돌연변 이주를 이용한 세포벽 합성기작에 대한 기초 및 응용연구의 가능성에 대하여 검토하여 보았다.

The Mitogen-Activated Protein Kinase Signal Transduction Pathways in Alternaria Species

  • Xu, Houjuan;Xu, Xiaoxue;Wang, Yu-Jun;Bajpai, Vivek K.;Huang, Lisha;Chen, Yongfang;Baek, Kwang-Hyun
    • The Plant Pathology Journal
    • /
    • 제28권3호
    • /
    • pp.227-238
    • /
    • 2012
  • Mitogen-activated protein kinase (MAPK) cascades are conserved signaling modules in the eukaryotic cells. They are involved in many major cell processes in fungi such as stress responses, vegetative growth, pathogenicity, secondary metabolism and cell wall integrity. In this review, we summarized the advances of research on the MAPK signaling pathways in Alternaria species. As major phytopathogenic fungi, Alternaria species reduce crop production. In contrast to the five MAPK pathways known in yeast, only three MAPK pathways as Fus3/Kss1-type, Hog1-type, and Slt2-type have been characterized in Alternaria. The Fus3/Kss1-type MAPK pathway participates in regulation of vegetative growth, conidiation, production of some cell-wall-degrading enzymes and pathogenicity. The Hog1-type pathway is involved in osmotic and oxidative stress, fungicides susceptibility and pathogenicity. The Slt2-type MAP kinases play an important role on maintaining cell wall integrity, pathogenicity and conidiation. Although recent advances on the MAPK pathways in Alternaria spp. reveal many important features on the pathogenicity, there are many unsolved problems regarding to the unknown MAP kinase cascade components and network among other major signal transduction. Considering the economic loss induced by Alternaria spp., more researches on the MAPK pathways will need to control the Alternaria diseases.

Phenotypic and Cell Wall Proteomic Characterization of a DDR48 Mutant Candida albicans Strain

  • El Khoury, Pamela;Salameh, Carell;Younes, Samer;Awad, Andy;Said, Yana;Khalaf, Roy A.
    • Journal of Microbiology and Biotechnology
    • /
    • 제29권11호
    • /
    • pp.1806-1816
    • /
    • 2019
  • Candida albicans is an opportunistic fungus possessing multiple virulence factors controlling pathogenicity. Cell wall proteins are the most important among these factors, being the first elements contacting the host. Ddr48 is a cell wall protein consisting of 212 amino acids. A DDR48 haploinsufficient mutant strain was previously found necessary for proper oxidative stress response and drug resistance. In this study, we aimed to further elucidate the role of Ddr48 by performing additional phenotypic characterization assays. A combinatory proteomic and bioinformatics approach was also undertaken to determine differentially expressed cell wall proteins. Results showed that the mutant strain exhibited a 10% decrease in adhesion mirrored by a 20% decrease in biofilm formation, and slight sensitivity to menadione, diamide, and SDS. Both strains showed similar hyphae formation, virulence, temperature tolerance, and calcofluor white and Congo red sensitivities. Furthermore, a total of 8 and 10 proteins were identified exclusively in the wild-type strain grown under filamentous and non-filamentous conditions respectively. Results included proteins responsible for superoxide stress resistance (Sod4 and Sod6), adhesion (Als3, Hyr4, Pmt1, and Utr2), biofilm formation (Hsp90, Ece1, Rim9, Ipp1, and Pra1) and cell wall integrity (Utr2 and Pga4). The lack of detection of these proteins in the mutant strain correlates with the observed phenotypes.

오존 처리에 의한 이태리포플러 목분의 화학적 성상 변화 (Chemical Characteristics of Ozone Treated Aspen Wood Meal)

  • 김강재;엄태진
    • 펄프종이기술
    • /
    • 제43권1호
    • /
    • pp.29-35
    • /
    • 2011
  • Since the role of lignin in the wood cell wall is to keep integrity and structure rigidity of lignocellulosic substrate, lignin of the cell wall has to be destroyed before enzymatic hydrolysis of wood polysaccharides. The aspen wood meals were delignified with ozone in acidic condition. The chemical characteristics of wood meal were investigated. The 60% of lignin and almost zero % of polysaccharides in aspen wood meal was degraded with 10min. ozone treatment. The phenolic hydroxyl groups of lignin in ozonated wood meal were increased with ozonation time. The sugar composition of ozonated wood meal showed that the hemicellulose was more susceptible to ozonation than cellulose. The yield of aldehyde was increased in some degree with 10min. ozone treatment and decreased with longer ozone treatment.