• 제목/요약/키워드: cell wall degradation enzyme

검색결과 21건 처리시간 0.03초

과실의 연화중에 세포벽 성분과 세포벽분해효소의 변화 (Changes in Cell Wall Components and Cell Wall-degrading enzymes during Softening of Fruits)

  • 신승렬;김광수
    • 한국식품저장유통학회지
    • /
    • 제3권1호
    • /
    • pp.93-104
    • /
    • 1996
  • The cell wall components of fruit include cellulose. hemicellulose, pectin, glycoprotein etc., and the cell wall composition differs according to the kind of fruit. Fruit softening occurs as a result of a change in the cell wall polysaccharides : the middle lamella which links primary cell walls is composed of pectin. and primary cell walls are decomposed by a solution of middle lamella caused due to a result of pectin degradation by pectin degrading enzymes during ripening and softening, During fruit ripening and softening, contents of arabinose and galactose among non-cellulosic neutral sugars are notably decreased, and this occurs as a result of the degradation of pectin during fruit repening and softening since they are side-chained with pectin in the form of arabinogalactan and galactan Enzymes involved in the degradation of the cell wall include polygalacturonase, cellulose, pectinmethylesterase, glycosidase, etc., and various studies have been done on the change in enzyme activities during the ripening and softning of fruit. Among cell wall-degrading enzymes, polygalacturonase has the greatest effect on fruit softening, and its activity Increases during the maturating and softening of fruit. This softening leads to the textural change of fruit as a result of the degradation of cell wall polysaccharides by a cell wall degrading enzyme which exists in fruit.

  • PDF

Plant Cell Wall Degradation with a Powerful Fusarium graminearum Enzymatic Arsenal

  • Phalip, Vincene;Goubet, Florence;Carapito, Raphael;Jeltsch, Jean-Marc
    • Journal of Microbiology and Biotechnology
    • /
    • 제19권6호
    • /
    • pp.573-581
    • /
    • 2009
  • The complex enzyme pool secreted by the phytopathogenic fungus Fusarium graminearum in response to glucose or hop cell wall material as sole carbon sources was analyzed. The biochemical characterization of the enzymes present in the supernatant of fungal cultures in the glucose medium revealed only 5 different glycosyl hydrolase activities; by contrast, when analyzing cultures in the cell wall medium, 17 different activities were detected. This dramatic increase reflects the adaptation of the fungus by the synthesis of enzymes targeting all layers of the cell wall. When the enzymes secreted in the presence of plant cell wall were used to hydrolyze pretreated crude plant material, high levels of monosaccharides were measured with yields approaching 50% of total sugars released by an acid hydrolysis process. This report is the first biochemical characterization of numerous cellulases, hemicellulases, and pectinases secreted by F. graminearum and demonstrates the usefulness of the described protein cocktail for efficient enzymatic degradation of plant cell wall.

Chemical Changes during Ensilage and In sacco Degradation of Two Tropical Grasses: Rhodesgrass and Guineagrass Treated with Cell Wall-degrading Enzymes

  • Zhu, Yu;Nishino, Naoki;Xusheng, Guo
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제24권2호
    • /
    • pp.214-221
    • /
    • 2011
  • Effects of the cell wall-degrading enzymes derived from Acremonium cellulolyticus and Trichoderma viride on the silage fermentation and in sacco degradation of tropical grasses i.e. rhodesgrass (Chloris gayana Kunth. cv. Callide) and guineagrass (Panicum maximum Jacq. cv. Natsukaze) were investigated in laboratory-scale experiments. These two grasses were either treated with or without the enzymes before ensiling. Untreated rhodesgrass produced acetate fermentation silage (lactate, $13.0\;g\;kg^{-1}$ DM; acetate, $38.7\;g\;kg^{-1}$ DM) with high final pH value and $NH_3$-N content (5.84 and $215\;g\;kg^{-1}$ DM). Addition of enzymes significantly increased (p<0.01) the lactate production (lactate, 45.6; acetate, $34.0\;g\;kg-^{1}$ DM) and decreased (p<0.01) the pH and $NH_3$-N (4.80 and $154\;g\;kg^{-1}$ DM) in the ensiled forages when compared with the control silages. Untreated guineagrass was successfully preserved with a high lactate proportion (lactate, 45.5; acetate, $24.1\;g\;kg^{-1}$ DM), and the addition of enzymes further enhanced the desirable fermentation (lactate, $57.5\;g\;kg^{-1}$ DM; acetate, $19.4\;g\;kg^{-1}$ DM). The content of NDF was lowered (p<0.05) by enzymes in both silages, but the extent appeared greater in the enzyme-treated rhodesgrass (rhodesgrass, $48\;g\;kg^{-1}$ DM; guineagrass, $21\;g\;kg^{-1}$ DM). Changes in the kinetics of in sacco degradation showed that enzyme treatment increased (p<0.01) the rapidly degradable DM (rhodesgrass, 299 vs. $362\;g\;kg^{-1}$ DM; guineagrass, 324 vs. $343\;g\;kg^{-1}$ DM) but did not influence the potential degradation, lag time and degradation rate of DM and NDF in the two silages.

효소 분해법에 의한 맥주효모 추출물의 제조 (Production of Brewer's Yeast Extract by Enzymatic Method)

  • 이시경;박경호;백운화;유주현
    • 한국미생물·생명공학회지
    • /
    • 제21권3호
    • /
    • pp.276-280
    • /
    • 1993
  • Cell lytic enzyme, 5'-phosphodiesterase, and AMP-deaminase were used to produce yeast extract as a natural seasoning from beer yeast cells. Prior to the addition of cell lytic enzyme, heat treatment was performed to increase the cell wall degradation` the optimum condition of the cell lytic enzyme was 50C at pH 7.0. The production yields by the enzymatic method and conventional autolysis method were 42% and 35%, respectively. The total quantity of 5'-nucleotides, GMP and IMP, produced by enzymatic method was increased by 45% than that by the conventional method. Futhermore, the operation time of enzymatic method was only 6.5 hrs, significantly reduced from 24 hrs of the conventional method.

  • PDF

고추의 성숙에 따른 세포벽 다당류의 변화와 ${\beta}-Galactosidase$ Isozymes의 분리 (Ripening Related Changes in Hot Pepper Fruit Cell Walls Structural Alterations of Cell Wall Polysaccharides and Separation of Galactosidase Isozymes)

  • 김순동;강명수;김광수
    • 한국식품영양과학회지
    • /
    • 제14권2호
    • /
    • pp.157-163
    • /
    • 1985
  • Various cell wall polysaccharides and related enzyme activities in hot pepper fruit were determined at different stages of maturity. The uronic acid content of cell walls decreased between immature green and turning stage fruit and then increased by red ripe stage. In contrast, cellulose content of cell walls changed only a little during ripening. Total neutal sugar content of cell wall material decreased 50% and galactose content of the walls decreased about 80% by the turning stage. Polygalacturonase and ${\beta}-galactosidase$ activities, as well as total hemicellulose from isolated cell walls of ripening hot pepper fruit were studied using gel filtration chromatography. Polygalacturonase activity was not detectable but 5 isozymes of ${\beta}-galactosidase$ were resolved. The activities of the enzymes were relatively high and gel filtration showed that they differed in molecular weight. Hemicellulose content decreased during ripening and softening. The molecular weight profiles shifted from high molecular weight to low molecular weight polymers during ripening. The changes in cell walls that may be associated with fruit softening involve the alteration of hemicellulose prior to the degradation of wall-bound uronic acid. It is suggested that the decrease in cell wall galactose involved changes in turnover of new cell wall components.

  • PDF

Identification of Sugar-Responsive Genes and Discovery of the New Functions in Plant Cell Wall

  • 이은정
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2007년도 춘계학술발표회
    • /
    • pp.65-73
    • /
    • 2007
  • The objective of this study is to understand how regulatory mechanisms respond to sugar status for more efficient carbon utilization and source-sink regulation in plants. So, we need to identify and characterize many components of sugar-response pathways for a better understanding of sugar responses. For this end, genes responding change of sugar status were screened using Arabidpsis cDNA arrays, and confirmed thirty-six genes to be regulated by sucrose supply in detached leaves by RNA blot analysis. Eleven of them encoding proteins for amino acid metabolism and carbohydrate metabolism were repressed by sugars. The remaining genes induced by sugar supply were for protein synthesis including ribosomal proteins and elongation factors. Among them, I focused on three hydrolase genes encoding putative $\beta$-galactosidase, $\beta$-xylosidase, and $\beta$-glucosidase that were transcriptionally induced in sugar starvation. Homology search indicated that these enzymes were involved in hydrolysis of cell wall polysaccharides. In addition to my results, recent transcriptome analysis suggested multiple genes for cell wall degradation were induced by sugar starvation. Thus, I hypothesized that enzyme for cell wall degradation were synthesized and secreted to hydrolyze cell wall polysaccharides producing carbon source under sugar-starved conditions. In fact, the enzymatic activities of these three enzymes increased in culture medium of Arabidopsis suspension cells under sugar starvation. The $\beta$-galactosidase encoded by At5g56870 was identified as a secretory protein in culture medium of suspension cells by mass spectrometry analysis. This protein was specifically detected under sugar-starved condition with a specific antibody. Induction of these genes was repressed in suspension cells grown with galactose, xylose and glucose as well as with sucrose. In planta, expression of the genes and protein accumulation were detected when photosynthesis was inhibited. Glycosyl hydrolase activity against galactan also increased during sugar starvation. Further, contents of cell wall polysaccharides especially pectin and hemicellulose were markedly decreased associating with sugar starvation in detached leaves. The amount of monosaccharide in pectin and hemicellulose in detached leaves decreased in response to sugar starvation. These results supported my idea that cell wall has one of function to supply carbon source in addition to determination of cell shape and physical support of plant bodies.

  • PDF

Molecular Identification, Enzyme Assay, and Metabolic Profiling of Trichoderma spp.

  • Bae, Soo-Jung;Park, Young-Hwan;Bae, Hyeun-Jong;Jeon, Junhyun;Bae, Hanhong
    • Journal of Microbiology and Biotechnology
    • /
    • 제27권6호
    • /
    • pp.1157-1162
    • /
    • 2017
  • The goal of this study was to identify and characterize selected Trichoderma isolates by metabolic profiling and enzyme assay for evaluation of their potential as biocontrol agents against plant pathogens. Trichoderma isolates were obtained from the Rural Development Administration Genebank Information Center (Wanju, Republic of Korea). Eleven Trichoderma isolates were re-identified using ribosomal DNA internal transcribed spacer (ITS) regions. ITS sequence results showed new identification of Trichoderma isolates. In addition, metabolic profiling of the ethyl acetate extracts of the liquid cultures of five Trichoderma isolates that showed the best anti-Phytophthora activities was conducted using gas chromatography-mass spectrometry. Metabolic profiling revealed that Trichoderma isolates shared common metabolites with well-known antifungal activities. Enzyme assays indicated strong cell wall-degrading enzyme activities of Trichoderma isolates. Overall, our results indicated that the selected Trichoderma isolates have great potential for use as biocontrol agents against plant pathogens.

Effects of NSP Degrading Enzyme on In vitro Digestion of Barley

  • Li, W.F.;Sun, J.Y.;Xu, Z.R.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제17권1호
    • /
    • pp.122-126
    • /
    • 2004
  • A digestion trial in vitro was conducted to study effects of supplementation of NSP (non-starch polysaccharides) degrading enzyme (feed grade) on cell wall degradation and digestibility of nutrients in barley. The slices of barley were soaked in distilled water with or without 0.15% non-starch polysaccharides degrading enzyme. Microscopic examination of the slices showed that the endosperm cell wall of barley was completely degraded by the non-starch polysaccharides degrading enzyme. The residues and supernatant of digesta in vitro were separated by filtration with 0.1 mm nylon fabric. The residues were used for measurement of crude protein, crude fat, crude fiber, and moisture. The supernatant was used for determination of viscosity, as well as amino-nitrogen and glucose content. The results showed that compared with the control, the amino-nitrogen and glucose content of the supernatant increased by 17.58% (p<0.05) and 10.26% (p<0.05), respectively, while viscosity did not change. Enzyme supplementation increased the digestibilities of dry matter, crude protein, nitrogen-free extract, crude fat and crude fiber of barley by 18.1% (p<0.05), 20.3% (p<0.05), 16.4% (p<0.05), 26.9% (p<0.05) and 30.0% (p<0.05), respectively. The present study suggests that cell wall hydrolysis may contribute to improved nutrient digestion in vivo when non-starch polysaccharides degrading enzymes are fed to swine.

Mutanase Induction in Trichoderma harzianum by Cell Wall of Laetiporus sulphureus and its Application for Mutan Removal from Oral Biofilms

  • Wiater, Adrian;Szczodrak, Janusz;Pleszczynska, Malgorzata
    • Journal of Microbiology and Biotechnology
    • /
    • 제18권7호
    • /
    • pp.1335-1341
    • /
    • 2008
  • The cell wall material from fruiting bodies of Laetporus sulphureus has been suggested as a new alternative to mutan for the mutanase induction in Trichoderma harzianum. Structural analyses revealed that the cell wall fraction from this polypore fungus contained 56.3% of (1$\rightarrow$3)-linked $\alpha$-glucans. When the strain T. harzianum F-340 was grown on a cell wall preparation from L. sulphureus, the maximal enzyme productivity obtained after 3 days of cultivation was 0.71 U/ml. This yield was about 1.8-fold higher than that achieved on mutan, known so far as the best, but expensive and inaccessible, inducer of mutanase production. Cell-wall-induced mutanase showed a high hydrolytic potential in reaction with a dextranase-pretreated mutan, where maximal degrees of saccharification and solubilization of this biopolymer (80% and 100%, respectively) were reached in 3 h at 45$^{\circ}C$. The mutanase preparation was also effective in degradation of streptococcal mutan and its removal from oral biofilms, especially in a mixture with dextranase.

대두(Glycine max) protoplast의 세포벽재생에 대한 benzyladenine의 영향 (Effects of benzyladenine on the cell wall regeneration of soybean(Glycine max) protoplasts)

  • 류기중;박창규
    • Applied Biological Chemistry
    • /
    • 제35권6호
    • /
    • pp.507-512
    • /
    • 1992
  • 대두(Glycine max)의 ${\beta}$-1,3-glucanase를 분리동정하고 benzyladenine(BA)이 이 효소의 세포내 함량과 활동도에 미치는 영향을 조사하였다. 또 세포벽의 callose함량과 protoplast의 세포벽재생에 미치는 BA의 영향을 조사하여, cytokinin이 식물의 세포벽재생을 촉진하는 기능이 있음을 확인하고 세포벽재생에 있어서 cytokinin의 작용기구를 검토하였다. 대두 ${\beta}-1,3-glucanase$는 21 kD의 polypeptide로 동정되었는데 이 polypeptide의 세포내함량과 효소활성은 BA처리에 의하여 저하되었다. 그리고 callus세포벽의 callose함량과 protoplast의 세포벽재생율이 BA처리에 의하여 증가되었다. 이 결과들은 cytokinin이 세포의 ${\beta}-1,3-glucanase$수준을 저하시켜 callose분해를 억제함으로써 세포벽 재생을 촉진할 수 있음을 보여주었다.

  • PDF